【題目】某城市的公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個(gè)人員密集流動(dòng)地段增設(shè)一個(gè)起點(diǎn)站,為了研究車輛發(fā)車間隔時(shí)間與乘客等候人數(shù)之間的關(guān)系,經(jīng)過(guò)調(diào)查得到如下數(shù)據(jù):
間隔時(shí)間/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人數(shù)y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
調(diào)查小組先從這組數(shù)據(jù)中選取組數(shù)據(jù)求線性回歸方程,再用剩下的組數(shù)據(jù)進(jìn)行檢驗(yàn).檢驗(yàn)方法如下:先用求得的線性回歸方程計(jì)算間隔時(shí)間對(duì)應(yīng)的等候人數(shù),再求與實(shí)際等候人數(shù)的差,若差值的絕對(duì)值都不超過(guò),則稱所求方程是“恰當(dāng)回歸方程”.
(1)從這組數(shù)據(jù)中隨機(jī)選取組數(shù)據(jù)后,求剩下的組數(shù)據(jù)的間隔時(shí)間不相鄰的概率;
(2)若選取的是后面組數(shù)據(jù),求關(guān)于的線性回歸方程,并判斷此方程是否是“恰當(dāng)回歸方程”;
(3)為了使等候的乘客不超過(guò)人,試用(2)中方程估計(jì)間隔時(shí)間最多可以設(shè)置為多少(精確到整數(shù))分鐘.
附:對(duì)于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.
【答案】(1);(2),見解析;(3)18
【解析】
(1)由題意結(jié)合古典概型計(jì)算公式確定概率值即可;
(2)首先求得回歸方程,然后確定其是否為“恰當(dāng)回歸方程”即可;
(3)結(jié)合(2)中求得的結(jié)論得到不等式,求解不等式即可確定間隔時(shí)間.
(1)設(shè)“從這組數(shù)據(jù)中隨機(jī)選取組數(shù)據(jù)后,剩下的組數(shù)據(jù)不相鄰”為事件.
記這六組數(shù)據(jù)分別為,,
剩下的兩組數(shù)據(jù)的基本事件有,共種,
其中相鄰的有共種,所以.
(2)后面組數(shù)據(jù)是:
間隔時(shí)間(分鐘) | ||||
等候人數(shù)(人) |
因?yàn)?/span>,,
所以,
,
所以,,
所以,
當(dāng)時(shí),,;
當(dāng)時(shí),,;
所以求出的線性回歸方程是“恰當(dāng)回歸方程”.
(3)由,得,故間隔時(shí)間最多可設(shè)置為分鐘.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分13分)
如圖,已知拋物線,過(guò)點(diǎn)任作一直線與相交于兩點(diǎn),過(guò)點(diǎn)作軸的平行線與直線相交于點(diǎn)(為坐標(biāo)原點(diǎn)).
(1)證明:動(dòng)點(diǎn)在定直線上;
(2)作的任意一條切線(不含軸)與直線相交于點(diǎn),與(1)中的定直線相交于點(diǎn),證明:為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上,且拋物線上有一點(diǎn)到焦點(diǎn)的距離為5.
(1)求該拋物線的方程;
(2)已知拋物線上一點(diǎn),過(guò)點(diǎn)作拋物線的兩條弦和,且,判斷直線是否過(guò)定點(diǎn)?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中表示中的最小者.下列說(shuō)法錯(cuò)誤的是
A. 函數(shù)為偶函數(shù) B. 若時(shí),有
C. 若時(shí), D. 若時(shí),
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(3,3),B(5,–1)到直線l的距離相等,且直線l過(guò)點(diǎn)P(0,1),則直線l的方程( )
A.y=1B.2x+y–1=0
C.2x+y–1=0或2x+y+1=0D.y=1或2x+y–1=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)小商店從一家有限公司購(gòu)進(jìn)21袋白糖,每袋白糖的標(biāo)準(zhǔn)質(zhì)量是500g,為了了解這些白糖的質(zhì)量情況,稱出各袋白糖的質(zhì)量(單位:g)如下:
486 495 496 498 499 493 493 498 484 497 504 489 495 503
499 503 509 498 487 500 508
(1)21袋白糖的平均質(zhì)量是多少?標(biāo)準(zhǔn)差s是多少?
(2)質(zhì)量位于與之間有多少袋白糖?所占的百分比是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校有高中學(xué)生500人,其中男生320人,女生180人.有人為了獲得該校全體高中學(xué)生的身高信息,采用分層抽樣的方法抽取樣本,并觀測(cè)樣本的指標(biāo)值(單位:cm),計(jì)算得男生樣本的均值為173.5,方差為17,女生樣本的均值為163.83,方差為30.03.
(1)根據(jù)以上信息,能夠計(jì)算出總樣本的均值和方差嗎?為什么?
(2)如果已知男、女樣本量按比例分配,你能計(jì)算出總樣本的均值和方差各為多少嗎?
(3)如果已知男、女的樣本量都是25,你能計(jì)算出總樣本的均值和方差各為多少嗎?它們分別作為總體均值和方差的估計(jì)合適嗎?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象與直線相切于點(diǎn).
(Ⅰ)求的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(且).
(1)判斷函數(shù)的奇偶性并說(shuō)明理由;
(2)當(dāng)時(shí),判斷函數(shù)在上的單調(diào)性,并利用單調(diào)性的定義證明;
(3)是否存在實(shí)數(shù),使得當(dāng)的定義域?yàn)?/span>時(shí),值域?yàn)?/span>?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com