(極坐標(biāo)與參數(shù)方程選做題)
已知曲線C1的極坐標(biāo)方程為ρ=6cosθ,曲線C2的極坐標(biāo)方程為θ=
π4
(ρ∈R,曲線C1、C2相交于點(diǎn)A,B,則弦AB的長為
 
分析:把曲線C1的極坐標(biāo)方程為ρ=6cosθ,曲線C2的極坐標(biāo)方程為θ=
π
4
(ρ∈R)分別化為直角坐標(biāo)方程.
再利用點(diǎn)到直線的距離公式可得圓心C1到直線的距離d,弦長公式可得弦AB的長=2
r2-d2
解答:解:把曲線C1的極坐標(biāo)方程為ρ=6cosθ,即ρ2=6ρcosθ,化為直角坐標(biāo)方程:x2+y2=6x,
即(x-3)2+y2=9,圓心為C1(3,0),半徑r=3.
把曲線C2的極坐標(biāo)方程為θ=
π
4
(ρ∈R)化為直角坐標(biāo)方程:y=x.
則圓心C1到直線的距離d=
3
2
,
∴弦AB的長=2
r2-d2
=2
9-(
3
2
)2
=3
2

故答案為:3
2
點(diǎn)評(píng):本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、點(diǎn)到直線的距離公式、弦長公式2
r2-d2
、勾股定理等基礎(chǔ)知識(shí)與基本技能方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(極坐標(biāo)與參數(shù)方程選做題)極坐標(biāo)方程為ρ=2cosθ的圓與參數(shù)方程為
x=-1+
2t
y=
2t
的直線位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)A.(不等式選講選做題)函數(shù)y=|x+1|+|x-1|的最小值是
 

B.(幾何證明選講選做題)如圖,PA切圓O于點(diǎn)A,割線PBC經(jīng)過圓心O,OB=PB=1,OA繞點(diǎn)O逆時(shí)針轉(zhuǎn)60°到OD,則PD的長為
 

C.(極坐標(biāo)與參數(shù)方程選做題)在極坐標(biāo)系中,過圓ρ=6cosθ的圓心,且垂直于極軸的直線的極坐標(biāo)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•月湖區(qū)模擬)①(極坐標(biāo)與參數(shù)方程選講選做題)已知點(diǎn)P(1+cosα,sinα),參數(shù)α∈[0,π],點(diǎn)Q在曲線C:ρ=
9
2
sin(θ+
π
4
)
上,則點(diǎn)P與點(diǎn)Q之間距離的最小值為
4
2
-1
4
2
-1

②(不等式選講選做題)若存在實(shí)數(shù)x滿足|x-3|+|x-m|<5,則實(shí)數(shù)m的取值范圍是
(-2,8)
(-2,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4:極坐標(biāo)與參數(shù)方程選講
已知:曲線C的極坐標(biāo)方程為:ρ=acosθ(a>0),直線?的參數(shù)方程為:
x=1+
2
2
t
y=
2
2
t
(t為參數(shù))
(1)求曲線C與直線?的普通方程;
(2)若直線?與曲線C相切,求a值.

查看答案和解析>>

同步練習(xí)冊(cè)答案