【題目】如圖所示,在△ABC中,D、F分別是BC、AC的中點, = , = , = .
(1)用 、 表示向量 、 、 、 、 ;
(2)求證:B、E、F三點共線.
【答案】
(1)解:如圖所示:解延長AD到G,使 = ,
連接BG、CG,得到四邊形ABGC,
∵D是BC和AG的中點,
∴四邊形ABGC是平行四邊形,則 = + = ,
∴ = = ( ), = = ( ).
∵F是AC的中點,∴ = = ,
∴ = ﹣ = ( )﹣ = ( ).
= ﹣ = ﹣ = ( )
(2)證明:由(1)可知, = ( ), = ( ).
∴ = ,即 、 是共線向量,所以B、E、F三點共線
【解析】(1)由題意作出輔助線構(gòu)成平行四邊形ABGC,由四邊形法則和D是AG的中點求出 ,由題意求出 ,由F是AC的中點求出 ,再由向量減法的三角形法則求出 和 ;(2)由(1)求出 = ,故兩個向量共線,即B、E、F三點共線.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓過點,其離心率為.
(1)求橢圓的方程;
(2)直線與相交于兩點,在軸上是否存在點,使為正三角形,若存在,求直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若f(x)=x3+ax2+bx+c有兩個極值點x1 , x2且f(x1)=x1 , 則關(guān)于x的方程3[(f(x)]2+2af(x)+b=0的不同實根個數(shù)為( )
A.2
B.3
C.4
D.不確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),f(x+2)=f(x),當x∈(0,1]時,f(x)=1﹣2|x﹣ |,則函數(shù)g(x)=f[f(x)]﹣ x在區(qū)間[﹣2,2]內(nèi)不同的零點個數(shù)是( )
A.5
B.6
C.7
D.9
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)對任意的a,b∈R,都有f(a+b)=f(a)+f(b)﹣1,且當x>0時,f(x)>1
(1)判斷并證明f(x)的單調(diào)性;
(2)若f(4)=3,解不等式f(3m2﹣m﹣2)<2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)g(x)=ax3+2(1﹣a)x2﹣3ax在區(qū)間(﹣∞, )內(nèi)單調(diào)遞減,則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下表是某廠的產(chǎn)量x與成本y的一組數(shù)據(jù):
產(chǎn)量x(千件) | 2 | 3 | 5 | 6 |
成本y(萬元) | 7 | 8 | 9 | 12 |
(Ⅰ)根據(jù)表中數(shù)據(jù),求出回歸直線的方程 = x (其中 = , = ﹣ )
(Ⅱ)預計產(chǎn)量為8千件時的成本.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex , g(x)=ln 的圖象分別與直線y=m交于A,B兩點,則|AB|的最小值為( )
A.2
B.2+ln2
C.e2
D.2e﹣ln
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com