【題目】已知f(x)是定義在區(qū)間[﹣1,1]上的奇函數,且f(﹣1)=1,若m,n∈[﹣1,1],m+n≠0時,有 <0.
(1)解不等式f(x+ )<f(1﹣x);
(2)若f(x)≤t2﹣2at+1對所有x∈[﹣1,1],a∈[﹣1,1]恒成立,求實數t的取值范圍.
【答案】
(1)解:證明:令m=x1,n=﹣x2,且﹣1≤x1<x2≤1,
代入 <0得 <0.
∵x1<x2
∴f(x1)>f(x2)
按照單調函數的定義,可知該函數在[﹣1,1]上單調遞減.
原不等式f(x+ )<f(1﹣x)等價于 ,
∴ <x<
(2)解:由于f(x)為減函數,∴f(x)的最大值為f(﹣1)=1,
∴f(x)≤t2﹣2at+1對x∈[﹣1,1],a∈[﹣1,1]恒成立,等價于t2﹣2at+1≥1對任意的a∈[﹣1,1]恒成立,
即t2﹣2at≥0對任意的a∈[﹣1,1]恒成立.
把y=t2﹣2at看作a的函數,由于a∈[﹣1,1]知其圖象是一條線段.
∵t2﹣2at≥0對任意的a∈[﹣1,1]恒成立
∴ ,
∴ ,
解得t≤﹣2或t=0或t≥2
【解析】(1)令m=x1 , n=﹣x2 , 且﹣1≤x1<x2≤1,代入條件,根據函數單調性的定義進行判定;根據函數的單調性,以及函數的定義域建立不等式組,解之即可.(2)由于f(x)為減函數,可得f(x)的最大值為f(﹣1)=1.f(x)≤t2﹣2at+1對a∈[﹣1,1],x∈[﹣1,1]恒成立t2﹣2at+1≥1對任意a∈[﹣1,1]恒成立t2﹣2at≥0對任意a∈[﹣1,1]恒成立.看作a的一次函數,即可得出.
科目:高中數學 來源: 題型:
【題目】有以下四種變換方式:
① 向左平移個單位長度,再將每個點的橫坐標縮短為原來的;
② 向右平移個單位長度,再將每個點的橫坐標縮短為原來的;
③ 每個點的橫坐標縮短為原來的,向右平移個單位長度;
④ 每個點的橫坐標縮短為原來的,向左平移個單位長度;
其中能將的圖像變換成函數的圖像的是( )
A.①和③ B.①和④ C.②和④ D.②和③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(, ),且對任意,都有.
(Ⅰ)用含的表達式表示;
(Ⅱ)若存在兩個極值點, ,且,求出的取值范圍,并證明;
(Ⅲ)在(Ⅱ)的條件下,判斷零點的個數,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,已知b+c=2acosB.
(Ⅰ)證明:A=2B
(Ⅱ)若△ABC的面積S= ,求角A的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1)求PB和平面PAD所成的角的大;
(2)證明:AE⊥平面PCD;
(3)求二面角A﹣PD﹣C得到正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設入射光線沿直線y=2x+1射向直線y=x,則被y=x反射后,反射光線所在的直線方程是( )
A.x﹣2y﹣1=0
B.x﹣2y+1=0
C.3x﹣2y+1=0
D.x+2y+3=0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司對新研發(fā)的一種產品進行合理定價,且銷量與單價具有相關關系,將該產品按事先擬定的價格進行試銷,得到如下數據:
單價x(單位:元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量y(單位:萬件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)現(xiàn)有三條y對x的回歸直線方程: =﹣10x+170; =﹣20x+250; =﹣15x+210;根據所學的統(tǒng)計學知識,選擇一條合理的回歸直線,并說明理由.
(2)預計在今后的銷售中,銷量與單價服從(1)中選出的回歸直線方程,且該產品的成本是每件5元,為使公司獲得最大利潤,該產品的單價應定多少元?(利潤=銷售收入﹣成本)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩位學生參加數學競賽培訓.現(xiàn)分別從他們在培訓期間參加的若干次預賽成績中隨機抽取5次,記錄如下:
甲 | 88 | 89 | 92 | 90 | 91 |
乙 | 84 | 88 | 96 | 89 | 93 |
(Ⅰ)用莖葉圖表示這兩組數據;
(Ⅱ)現(xiàn)要從中選派一人參加數學競賽,你認為選派哪位學生參加合適?請說明理由.(用樣本數據特征來說明.)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中 ①若loga3>logb3,則a>b;
②函數f(x)=x2﹣2x+3,x∈[0,+∞)的值域為[2,+∞);
③設g(x)是定義在區(qū)間[a,b]上的連續(xù)函數.若g(a)=g(b)>0,則函數g(x)無零點;
④函數 既是奇函數又是減函數.
其中正確的命題有
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com