【題目】已知函數(shù)f(x)=Asin(ωx+)(A>0,ω>0)的最小正周期為,則( 。

A. 函數(shù)f(x)的一個零點為

B. 函數(shù)fx)的圖象關(guān)于直線x對稱

C. 函數(shù)fx)圖象上的所有點向左平移個單位長度后,所得的圖象關(guān)于y軸對稱

D. 函數(shù)fx)在(0,)上單調(diào)遞增

【答案】C

【解析】

利用三角函數(shù)的周期性求得的值,可得函數(shù)的解析式,再利用三角函數(shù)的圖象和性質(zhì)逐一檢驗選項中的結(jié)論是否正確,即可得出結(jié)論.

函數(shù)的最小正周期為,

函數(shù)

,不是函數(shù)的一個零點錯誤;

不是最值,不是函數(shù)的圖象的對稱軸,錯誤;

把函數(shù)圖象上的所有點向左平移個單位長度后,

可得的圖象,

這是一個偶函數(shù),故所得的圖象關(guān)于軸對稱正確;

上,,函數(shù)不是單調(diào)函數(shù),

錯誤,故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加高三模擬考試的學(xué)生中隨機抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:

(1)求分數(shù)在[120,130)內(nèi)的頻率;

(2)估計本次考試的中位數(shù);

(3)用分層抽樣的方法在分數(shù)段為[110,130)的學(xué)生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有1人在分數(shù)段[120,130)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列敘述中正確的是(   )

A. ,則“”的充要條件是“

B. 函數(shù)的最大值是

C. 命題“”的否定是“

D. 是一條直線,是兩個不同的平面,若

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查高一學(xué)生在分班選科時是否選擇物理科目與性別的關(guān)系,隨機調(diào)查100名高一學(xué)生,得到列聯(lián)表如下:由此得出的正確結(jié)論是( )

選擇物理

不選擇物理

總計

35

20

55

15

30

45

總計

50

50

100

附:

0.050

0.010

0.001

3.841

6.635

10.828

A.在犯錯誤的概率不超過0.01的前提下,認為“選擇物理與性別有關(guān)”

B.在犯錯誤的概率不超過0.01的前提下,認為“選擇物理與性別無關(guān)”

C.的把握認為“選擇物理與性別有關(guān)”

D.的把握認為“選擇物理與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機抽樣的方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:

性別

是否需要志愿者

需要

40

30

不需要

160

270

附:的觀測值

0.05

0.01

0.001

3.841

6.635

10.828

(1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;

(2)在犯錯誤的概率不超過0.01的前提下是否可認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位有員工1000名,平均每人每年創(chuàng)造利潤10萬元,為了增加企業(yè)競爭力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出x(xN*)名員工從事第三產(chǎn)業(yè),調(diào)整后他們平均每人每年創(chuàng)造利潤為10(a﹣0.8x%)萬元(a>0),剩下的員工平均每人每年創(chuàng)造的利潤可以提高0.4x%.

(1)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?

2)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)遣的年總利潤條件下,若要求調(diào)整出的員工創(chuàng)造出的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,則a的取值范圍是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=sin()的圖象與函數(shù)gx)的圖象關(guān)于x=1對稱,則函數(shù)gx)在(﹣6,﹣4)上( 。

A. 單調(diào)遞增 B. 單調(diào)遞減 C. 先增后減 D. 先減后增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角△中,,△通過△以直線為軸順時針旋轉(zhuǎn)120°得到(),點為線段上一點,且.

1)求證:,并證明:平面;

2)分別以、、軸建立空間直角坐標系,求異面直線所成角的大。ㄓ梅从嘞疫\算表示);

3)若,求銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)上,常用符號來表示算式,如記=,其中,.

1,,,…,成等差數(shù)列,且,求證:;

2,,記,且不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案