【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的普通方程與曲線的直角坐標(biāo)方程;

2)若交于,兩點(diǎn),點(diǎn)的極坐標(biāo)為,求的值.

【答案】1;);(2.

【解析】

1)由曲線的參數(shù)方程消去參數(shù)可得曲線的普通方程,利用,可將極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程;(2)證明點(diǎn)在曲線上,將直線的參數(shù)方程代入的直角坐標(biāo)方程得關(guān)于t的一元二次方程,然后利用直線參數(shù)的幾何意義進(jìn)行求解.

1)由曲線的參數(shù)方程消去參數(shù)可得,曲線的普通方程為

曲線的極坐標(biāo)方程為,

,可得,曲線的直角坐標(biāo)方程為.

2)由點(diǎn)的極坐標(biāo)為,可得點(diǎn)的直角坐標(biāo)為,

所以點(diǎn)在曲線上,

將曲線的參數(shù)方程為參數(shù))代入,

,

設(shè)點(diǎn),對(duì)應(yīng)的參數(shù)分別為,,則,.

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,左右焦點(diǎn)分別是,以為圓心,3為半徑的圓與以為圓心,1為半徑的圓相交,且交點(diǎn)在橢圓C.

1)求橢圓C的方程.

2)設(shè)橢圓P為橢圓C上任意一點(diǎn),過點(diǎn)P的直線交橢圓EA、B兩點(diǎn),射線OP交橢圓E于點(diǎn)Q.

①判斷是否為定值?若是定值求出該定值,若不是定值說明理由.

②求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線為參數(shù)),直線 為參數(shù), ),直線與曲線相切于點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程及點(diǎn)的極坐標(biāo);

2)曲線的直角坐標(biāo)方程為,直線的極坐標(biāo)方程為,直線與曲線交于在,兩點(diǎn),記的面積為,的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】算籌是在珠算發(fā)明以前我國(guó)獨(dú)創(chuàng)并且有效的計(jì)算工具,為我國(guó)古代數(shù)學(xué)的發(fā)展做出了很大貢獻(xiàn).在算籌記數(shù)法中,以“縱式”和“橫式”兩種方式來表示數(shù)字,如下表:

數(shù)字形式

縱式

橫式

表示多位數(shù)時(shí),個(gè)位用縱式,十位用橫式,百位用縱式,千位用橫式,以此類推,遇零則置空,如圖所示.如果把根算籌以適當(dāng)?shù)姆绞饺糠湃胂旅娴谋砀裰,那么可以表示的三位?shù)的個(gè)數(shù)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“地?cái)偨?jīng)濟(jì)”是李克強(qiáng)總理在本屆政府工作報(bào)告中向全國(guó)人民發(fā)出的口號(hào),某生產(chǎn)企業(yè)積極響應(yīng)號(hào)召,大力研發(fā)新產(chǎn)品,為了對(duì)新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),23,45,6),如表所示:

試銷單價(jià)x(元)

4

5

6

7

8

9

產(chǎn)品銷量y(件)

q

84

83

80

75

68

已知,,

1)試求q,若變量x,y具有線性相關(guān)關(guān)系,求產(chǎn)品銷量y(件)關(guān)于試銷單價(jià)x(元)的線性回歸方程

2)用表示用(1)中所求的線性回歸方程得到的與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)對(duì)應(yīng)的殘差的絕對(duì)值時(shí),則將銷售數(shù)據(jù)稱為一個(gè)“好數(shù)據(jù)”.現(xiàn)從6個(gè)銷售數(shù)據(jù)中任取3個(gè),求“好數(shù)據(jù)”個(gè)數(shù)的分布列和數(shù)學(xué)期望.

(參考公式:線性回歸方程中,的最小二乘估計(jì)分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)某社團(tuán)為研究高三學(xué)生課下鉆研數(shù)學(xué)時(shí)間與數(shù)學(xué)考試中的解答題得分的關(guān)系,隨機(jī)調(diào)查了某中學(xué)高三某班名學(xué)生每周課下鉆研數(shù)學(xué)時(shí)間(單位:小時(shí))與高三下學(xué)期期中考試數(shù)學(xué)解答題得分,數(shù)據(jù)如下表:

2

4

6

8

10

12

30

38

44

48

50

54

1)根據(jù)上述數(shù)據(jù),求出數(shù)學(xué)考試中的解答題得分與該學(xué)生課下鉆研數(shù)學(xué)時(shí)間的線性回歸方程,并預(yù)測(cè)某學(xué)生每周課下鉆研數(shù)學(xué)時(shí)間為小時(shí)其數(shù)學(xué)考試中的解答題得分;

2)從這人中任選人,求人中至少有人課下鉆研數(shù)學(xué)時(shí)間不低于小時(shí)的概率.

參考公式:,其中, ;參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

1)求曲線過原點(diǎn)的切線方程;

2)設(shè),若函數(shù)的導(dǎo)函數(shù)存在兩個(gè)不同的零點(diǎn),,求實(shí)數(shù)的范圍:

3)在(2)的條件下證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其導(dǎo)函數(shù)為,函數(shù),對(duì)任意,不等式恒成立.

1)求實(shí)數(shù)的值;

2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)某商場(chǎng)為了了解顧客的購(gòu)物信息,隨機(jī)的在商場(chǎng)收集了100位顧客購(gòu)物的相關(guān)數(shù)據(jù),整理如下:

一次購(gòu)物款(單位:元)

[0,50

[50,100

[100,150

[150,200

[200,+∞

顧客人數(shù)

m

20

30

n

10

統(tǒng)計(jì)結(jié)果顯示100位顧客中購(gòu)物款不低于100元的顧客占60%,據(jù)統(tǒng)計(jì)該商場(chǎng)每日大約有5000名顧客,為了增加商場(chǎng)銷售額度,對(duì)一次性購(gòu)物不低于100元的顧客發(fā)放紀(jì)念品(每人一件).(注:視頻率為概率)

1)試確定的值,并估計(jì)該商場(chǎng)每日應(yīng)準(zhǔn)備紀(jì)念品的數(shù)量;

2)為了迎接店慶,商場(chǎng)進(jìn)行讓利活動(dòng),一次購(gòu)物款200元及以上的一次返利30元;一次性購(gòu)物

款小于200元的按購(gòu)物款的百分比返利,具體見下表:

一次購(gòu)物款(單位:元)

[0,50

[50,100

[100,150

[150,200

返利百分比

0

6%

8%

10%

估計(jì)該商場(chǎng)日均讓利多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案