【題目】已知數(shù)列的前項和為,等差數(shù)列滿足.
(1)分別求數(shù)列的通項公式;
(2)若對任意的,恒成立,求實數(shù)的取值范圍.
【答案】(1)由----①得----②,
①②得,
又a2=3,a1=1也滿足上式,∴an=3n-1;----------------3分
; -----------------6分
(2),
對恒成立,即對恒成立,-----8分
令,,
當時,,當時,,--------------10分
,.----------12分
【解析】
試題(1)根據(jù)條件等差數(shù)列滿足,,將其轉化為等差數(shù)列基本量的求解,從而可以得到的通項公式,根據(jù)可將條件中的變形得到,驗證此遞推公式當n=1時也成立,可得到是等比數(shù)列,從而得到的通項公式;
(2)根據(jù)(1)中所求得的通項公式,題中的不等式可轉化為,從而問題等價于求,可求得當n=3時,為最大項,從而可以得到.
(1)設等差數(shù)列公差為,則,
解得,, (2分)
當時,,則,
是以1為首項3為公比的等比數(shù)列,則. (6分);
(2)由(1)知,,原不等式可化為(8分)
若對任意的恒成立,,問題轉化為求數(shù)列的最大項
令,則,解得,所以, (10分)
即的最大項為第項,,所以實數(shù)的取值范圍. (12分).
科目:高中數(shù)學 來源: 題型:
【題目】前不久商丘市因環(huán)境污染嚴重被環(huán)保部約談后,商丘市近期加大環(huán)境治理力度,如表提供了商丘某企業(yè)節(jié)能降耗技術改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應的生產(chǎn)能耗y(噸標準煤)的幾組對應數(shù)據(jù).
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程y=bx+a;
(2)已知該企業(yè)技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標準煤,試根據(jù)(1)求出的線性回歸方程,預測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低了多少噸標準煤?
(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)參考公式:=,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點F(1,0),點A是直線l1:x=﹣1上的動點,過A作直線l2 , l1⊥l2 , 線段AF的垂直平分線與l2交于點P. (Ⅰ)求點P的軌跡C的方程;
(Ⅱ)若點M,N是直線l1上兩個不同的點,且△PMN的內切圓方程為x2+y2=1,直線PF的斜率為k,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=axex , 其中常數(shù)a≠0,e為自然對數(shù)的底數(shù). (Ⅰ)求函數(shù)f(x)的單調區(qū)間;
(Ⅱ)當a=1時,求函數(shù)f(x)的極值;
(Ⅲ)若直線y=e(x﹣ )是曲線y=f(x)的切線,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】國內某知名大學有男生14000人,女生10000人,該校體育學院想了解本校學生的運動狀況,根據(jù)性別采取分層抽樣的方法從全校學生中抽取120人,統(tǒng)計他們平均每天運動的時間,如下表:(平均每天運動的時間單位:小時,該校學生平均每天運動的時間范圍是).
男生平均每天運動時間分布情況:
女生平均每天運動時間分布情況:
(1)請根據(jù)樣本估算該校男生平均每天運動的時間(結果精確到0.1);
(2)若規(guī)定平均每天運動的時間不少于2小時的學生為“運動達人”,低于2小時的學生為“非運動達人”.
①請根據(jù)樣本估算該!斑\動達人”的數(shù)量;
②請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并通過計算判斷能否在犯錯誤的概率不超過0.05的前提下認為“是否為‘運動達人’與性別有關?”
參考公式:,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設點M(x1 , f(x1))和點N(x2 , g(x2))分別是函數(shù)f(x)=ex﹣ x2和g(x)=x﹣1圖象上的點,且x1≥0,x2>0,若直線MN∥x軸,則M,N兩點間的距離的最小值為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的分別為a,b,c,且acosB=(3c﹣b)cosA.
(1)若asinB=2 ,求b;
(2)若a=2 ,且△ABC的面積為 ,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是奇函數(shù).
(1)求a的值和函數(shù)f(x)的定義域;
(2)解不等式f(-m2+2m-1)+f(m2+3)<0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com