【題目】如圖,四棱錐P-ABCD的底面ABCD是菱形,AC與BD交于點(diǎn)O,底面ABCD,點(diǎn)M為PC中點(diǎn),,,.
(1)求異面直線AP與BM所成角的余弦值;
(2)求平面ABM與平面PAC所成銳二面角的余弦值.
【答案】(1);(2)
【解析】
(1)以為原點(diǎn),,,方向?yàn)?/span>軸,軸,軸正方向,建立空間直角坐標(biāo)系,再利用向量法即可求解;
(2)求出平面的一個(gè)法向量和平面的一個(gè)法向量,再利用向量法求解即可.
(1)因?yàn)?/span>是菱形,所以,又底面,
故以為原點(diǎn),,,方向為軸,軸,軸正方向,建立如圖所示空間直角坐標(biāo)系,
則,0,,,1,,,0,,,0,,,0,,
所以,0,,,,,
,,
故直線與所成角的余弦值為;
(2),1,,,,,
設(shè)平面的一個(gè)法向量為,,,
則,令,得,4,,
又平面的一個(gè)法向量為,1,,
,
故平面與平面所成銳二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷并證明函數(shù)的單調(diào)性;
(3)若對(duì)任意的,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫(xiě)出直線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)的坐標(biāo)為,若點(diǎn)是曲線截直線所得線段的中點(diǎn),求的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知棱臺(tái),平面平面,,,,D,E分別是和的中點(diǎn)。
(Ⅰ)證明:;
(Ⅱ)求與平面所成角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+1,g(x)=4x+1,的定義域都是集合A,函數(shù)f(x)和g(x)的值域分別為S和T,
(1)若A=[1,2],求S∩T
(2)若A=[0,m]且S=T,求實(shí)數(shù)m的值
(3)若對(duì)于集合A的任意一個(gè)數(shù)x的值都有f(x)=g(x),求集合A.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某產(chǎn)品的三個(gè)質(zhì)量指標(biāo)分別為x, y, z, 用綜合指標(biāo)S =" x" + y + z評(píng)價(jià)該產(chǎn)品的等級(jí). 若S≤4, 則該產(chǎn)品為一等品. 現(xiàn)從一批該產(chǎn)品中, 隨機(jī)抽取10件產(chǎn)品作為樣本, 其質(zhì)量指標(biāo)列表如下:
產(chǎn)品編號(hào) | A1 | A2 | A3 | A4 | A5 |
質(zhì)量指標(biāo)(x, y, z) | (1,1,2) | (2,1,1) | (2,2,2) | (1,1,1) | (1,2,1) |
產(chǎn)品編號(hào) | A6 | A7 | A8 | A9 | A10 |
質(zhì)量指標(biāo)(x, y, z) | (1,2,2) | (2,1,1) | (2,2,1) | (1,1,1) | (2,1,2) |
(Ⅰ) 利用上表提供的樣本數(shù)據(jù)估計(jì)該批產(chǎn)品的一等品率;
(Ⅱ) 在該樣品的一等品中, 隨機(jī)抽取兩件產(chǎn)品,
(1) 用產(chǎn)品編號(hào)列出所有可能的結(jié)果;
(2) 設(shè)事件B為 “在取出的2件產(chǎn)品中, 每件產(chǎn)品的綜合指標(biāo)S都等于4”, 求事件B發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)若,證明:當(dāng)時(shí),;
(2)若對(duì)于任意的且,都有,求的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】政府工作報(bào)告指出,2018年我國(guó)深入實(shí)施創(chuàng)新驅(qū)動(dòng)發(fā)展戰(zhàn)略,創(chuàng)新能力和效率進(jìn)一步提升;2019年要提升科技支撐能力,健全以企業(yè)為主體的產(chǎn)學(xué)研一體化創(chuàng)新機(jī)制.某企業(yè)為了提升行業(yè)核心競(jìng)爭(zhēng)力,逐漸加大了科技投入;該企業(yè)連續(xù)6年來(lái)的科技投入(百萬(wàn)元)與收益(百萬(wàn)元)的數(shù)據(jù)統(tǒng)計(jì)如下:
科技投入 | 2 | 4 | 6 | 8 | 10 | 12 |
收益 |
根據(jù)散點(diǎn)圖的特點(diǎn),甲認(rèn)為樣本點(diǎn)分布在指數(shù)曲線的周?chē),?jù)此他對(duì)數(shù)據(jù)進(jìn)行了一些初步處理,如下表:
其中,.
(1)(i)請(qǐng)根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程(保留一位小數(shù));
(ii)根據(jù)所建立的回歸方程,若該企業(yè)想在下一年的收益達(dá)到2億,則科技投入的費(fèi)用至少要多少(其中)?
(2)乙認(rèn)為樣本點(diǎn)分布在二次曲線的周?chē)⒂?jì)算得回歸方程為,以及該回歸模型的相關(guān)指數(shù),試比較甲、乙兩位員工所建立的模型,誰(shuí)的擬合效果更好.
附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線方程的斜率和截距的最小二乘估計(jì)分別為,,相關(guān)指數(shù):.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com