【題目】已知數(shù)列的滿足,前項的和為,且.
(1)求的值;
(2)設(shè),證明:數(shù)列是等差數(shù)列;
(3)設(shè),若,求對所有的正整數(shù)都有成立的的取值范圍.
【答案】(1);(2)見解析;(3).
【解析】試題分析:(1)令得 (2) 因為,所以①.所以②,由②-①,得.因為,所以.所以,即,
即即可得證(3)由(2)知,因為,所以數(shù)列的通項公式為.因為,所以,所以,所以數(shù)列是常數(shù)列. 由,所以.所以.研究數(shù)列的單調(diào)性求出最小值,變量分離即可得解.
試題解析:
(1)令得.
(2)因為,所以①.
所以②,
由②-①,得.
因為,所以.
所以,即,
即,所以數(shù)列是公差為1的等差數(shù)列.
(3)由(2)知,因為,所以數(shù)列的通項公式為.
因為,所以,
所以,所以數(shù)列是常數(shù)列.
由,所以.
所以.
因為
所以數(shù)列為單調(diào)遞增數(shù)列
當時, ,即的最小值為
由,所以,
而當時, 在遞減, 遞增,所以,
當且僅當或時取得,故.
科目:高中數(shù)學 來源: 題型:
【題目】某公司計劃在甲、乙兩個電視臺做總時間不超過 300 分鐘的廣告,廣告總費用不超過9萬元.甲、乙電視臺的廣告收費標準分別為500元/分鐘和200元/分鐘.甲、乙兩個電視臺為該公司所做的每分鐘廣告,能給公司帶來的收益分別為0.3萬元和0.2萬元.設(shè)該公司在甲、乙兩個電視臺做廣告的時間分別為分鐘和分鐘.
(Ⅰ)用列出滿足條件的數(shù)學關(guān)系式,并畫出相應的平面區(qū)域;
(Ⅱ)該公司如何分配在甲、乙兩個電視臺做廣告的時間使公司的收益最大,并求出最大收益是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(某保險公司有一款保險產(chǎn)品的歷史戶獲益率(獲益率=獲益÷保費收入)的頻率分布直方圖如圖所示:
(Ⅰ)試估計平均收益率;
(Ⅱ)根據(jù)經(jīng)驗若每份保單的保費在元的基礎(chǔ)上每增加元,對應的銷量(萬份)與(元)有較強線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下組與的對應數(shù)據(jù):
(元) | |||||
銷量(萬份) |
(ⅰ)根據(jù)數(shù)據(jù)計算出銷量(萬份)與(元)的回歸方程為;
(ⅱ)若把回歸方程當作與的線性關(guān)系,用(Ⅰ)中求出的平均獲益率估計此產(chǎn)品的獲益率,每份保單的保費定為多少元時此產(chǎn)品可獲得最大獲益,并求出該最大獲益.
參考公示:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某景點擬建一個扇環(huán)形狀的花壇(如圖所示),按設(shè)計要求扇環(huán)的周長為36米,其中大圓弧所在圓的半徑為14米,設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).
⑴ 求關(guān)于的函數(shù)關(guān)系式;
⑵ 已知對花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為16元/米,設(shè)花壇的面積與裝飾總費用之比為,求關(guān)于的函數(shù)關(guān)系式,并求出的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】供電部門對某社區(qū)位居民2016年11月份人均用電情況進行統(tǒng)計后,按人均用電量分為, , , , 五組,整理得到如下的頻率分布直方圖,則下列說法錯誤的是( )
A. 11月份人均用電量人數(shù)最多的一組有人
B. 11月份人均用電量不低于度的有人
C. 11月份人均用電量為度
D. 在這位居民中任選位協(xié)助收費,選到的居民用電量在一組的概率為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD是矩形,PA面ABCD,且AB=2,AD=4,
AP=4,F是線段BC的中點.
⑴ 求證:面PAF面PDF;
⑵ 若E是線段AB的中點,在線段AP上是否存在一點G,使得EG面PDF?若存在,求出線段AG的長度;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E的中心在原點,焦點在x軸,焦距為2,且長軸長是短軸長的倍.
(Ⅰ)求橢圓E的標準方程;
(Ⅱ)設(shè)P(2,0),過橢圓E左焦點F的直線l交E于A、B兩點,若對滿足條件的任意直線l,不等式 ≤λ(λ∈R)恒成立,求λ的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com