【題目】鐵人中學(xué)高二學(xué)年某學(xué)生對(duì)其親屬30人飲食習(xí)慣進(jìn)行了一次調(diào)查,并用如圖所示的莖葉圖表示30人的飲食指數(shù).(說(shuō)明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類(lèi)為主.)

(Ⅰ)根據(jù)莖葉圖,幫助這位學(xué)生說(shuō)明其親屬30人的飲食習(xí)慣;

(Ⅱ)根據(jù)以上數(shù)據(jù)完成下列的列聯(lián)表:

主食蔬菜

主食肉類(lèi)

合計(jì)

50歲以下人數(shù)

50歲以上人數(shù)

合計(jì)人數(shù)

(Ⅲ)能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為其親屬的飲食習(xí)慣與年齡有關(guān)系?

附:.

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)能

【解析】

(1)根據(jù)莖葉圖,得到30位親屬中50歲以上的人多以食蔬菜為主,50歲以下的人多以食肉類(lèi)為主.

(2)根據(jù)莖葉圖所給的數(shù)據(jù),能夠完成2×2列聯(lián)表.

(3),求出K2,能夠求出結(jié)果.

(1)在30位親屬中,50歲以上的人多以食蔬菜為主,50歲以下的人多以食肉為主.

(2)2×2的列聯(lián)表如下:

主食蔬菜

主食肉類(lèi)

合計(jì)

50歲以下

4

8

12

50歲以上

16

2

18

合計(jì)

20

10

30

(3) )由(2)2×2的列聯(lián)表算得:K210>6.635,

所以能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為其親屬的飲食習(xí)慣與年齡有關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某村莊擬修建一個(gè)無(wú)蓋的圓柱形蓄水池(不計(jì)厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面積的建造成本為100/平方米,底面的建造成本為160/平方米,該蓄水池的總建造成本為12000π元(π為圓周率).

1)將V表示成r的函數(shù)Vr),并求該函數(shù)的定義域;

2)討論函數(shù)Vr)的單調(diào)性,并確定rh為何值時(shí)該蓄水池的體積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了鼓勵(lì)市民節(jié)約用電,某市實(shí)行“階梯式”電價(jià),將每戶(hù)居民的月用電量分為二檔,月用電量不超過(guò)200度的部分按0.5元/度收費(fèi),超過(guò)200度的部分按0.8元/度收費(fèi).某小區(qū)共有居民1000戶(hù),為了解居民的用電情況,通過(guò)抽樣,獲得了今年7月份100戶(hù)居民每戶(hù)的用電量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖.

(1)求的值;

(2)試估計(jì)該小區(qū)今年7月份用電量用不超過(guò)260元的戶(hù)數(shù);

(3)估計(jì)7月份該市居民用戶(hù)的平均用電費(fèi)用(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且滿(mǎn)足,則下列說(shuō)法正確的是( )

A. 數(shù)列的前項(xiàng)和為 B. 數(shù)列的通項(xiàng)公式為

C. 數(shù)列為遞增數(shù)列 D. 數(shù)列是遞增數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】通過(guò)研究學(xué)生的學(xué)習(xí)行為,專(zhuān)家發(fā)現(xiàn),學(xué)生的注意力著老師講課時(shí)間的變化而變化,講課開(kāi)始時(shí),學(xué)生的興趣激增;中間有一段時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開(kāi)始分散,設(shè)f(t)表示學(xué)生注意力隨時(shí)間t(分鐘)的變化規(guī)律\left(f(t)越大,表明學(xué)生注意力越集中),經(jīng)過(guò)實(shí)驗(yàn)分析得知:

(1)講課開(kāi)始后多少分鐘,學(xué)生的注意力最集中?能持續(xù)多少分鐘?

(2)講課開(kāi)始后5分鐘與講課開(kāi)始后25分鐘比較,何時(shí)學(xué)生的注意力更集中?

(3)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達(dá)到180,那么經(jīng)過(guò)適當(dāng)安排,教師能否在學(xué)生達(dá)到所需的狀態(tài)下講授完這道題目?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,再把縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,得到函數(shù),則下列說(shuō)法正確的是( )

A. 函數(shù)的最小正周期為 B. 函數(shù)在區(qū)間上單調(diào)遞增

C. 函數(shù)在區(qū)間上的最小值為 D. 是函數(shù)的一條對(duì)稱(chēng)軸

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線(xiàn)的參數(shù)方程為為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)若過(guò)點(diǎn)的直線(xiàn)交于兩點(diǎn),與交于兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的最小值;

2)當(dāng)時(shí),記函數(shù)的所有單調(diào)遞增區(qū)間的長(zhǎng)度為,所有單調(diào)遞減區(qū)間的長(zhǎng)度為,證明:.(注:區(qū)間長(zhǎng)度指該區(qū)間在軸上所占位置的長(zhǎng)度,與區(qū)間的開(kāi)閉無(wú)關(guān).)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)的焦點(diǎn)為,點(diǎn)的坐標(biāo)為,點(diǎn)在拋物線(xiàn)上,且滿(mǎn)足,(為坐標(biāo)原點(diǎn)).

(1)求拋物線(xiàn)的方程;

(2)過(guò)點(diǎn)作斜率乘積為1的兩條不重合的直線(xiàn),且與拋物線(xiàn)交于兩點(diǎn),與拋物線(xiàn)交于兩點(diǎn),線(xiàn)段的中點(diǎn)分別為,求證:直線(xiàn)過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案