【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,已知圓的圓心坐標為,半徑為,以坐標原點為極點, 軸正半軸為極軸,建立極坐標系,直線的參數(shù)方程為: (為參數(shù))
(1)求圓和直線的極坐標方程;
(2)點 的極坐標為,直線與圓相較于,求的值.
科目:高中數(shù)學 來源: 題型:
【題目】如果存在常數(shù)(),對于任意,都有成立,那么稱該函數(shù)為“函數(shù)”.
(1)分別判斷函數(shù),是否為“函數(shù)”,若不是,說明理由;
(2)若函數(shù)是“函數(shù)”,求實數(shù)的取值范圍;
(3)記所有定義在上的單調函數(shù)組成的集合為,所有函數(shù)組成的集合為,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某省高考改革方案指出:該省高考考生總成績將由語文數(shù)學英語3門統(tǒng)一高考成績和學生從思想政治、歷史、地理、物理、化學、生物6門等級性考試科目中自主選擇3個,按獲得該次考試有效成績的考生(缺考考生或未得分的考生除外)總人數(shù)的相應比例的基礎上劃分等級,位次由高到低分為A、B、C、D、E五等級,該省的某市為了解本市萬名學生的某次選考歷史成績水平,從中隨機抽取了名學生選考歷史的原始成績,將所得成績整理后,繪制出如圖所示的頻率分布直方圖.
(Ⅰ)估算名學生成績的平均值和中位數(shù)(同一組中的
數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅱ)若抽取的分以上的只有名男生,現(xiàn)從抽樣的分以上學生中隨機抽取人,求抽取到名女生的概率?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線、與平面、,下列命題:
①若平行內的一條直線,則;②若垂直內的兩條直線,則;③若,,且,,則;④若,,且,則;⑤若,且,則;⑥若,,,則.
其中正確的命題為______(填寫所有正確命題的編號).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校初一年級全年級共有名學生,為了拓展學生的知識面,在放寒假時要求學生在假期期間進行廣泛的閱讀,開學后老師對全年級學生的閱讀量進行了問卷調查,得到了如圖所示的頻率分布直方圖(部分已被損毀),統(tǒng)計人員記得根據(jù)頻率直方圖計算出學生的平均閱讀量為萬字.根據(jù)閱讀量分組按分層抽樣的方法從全年級人中抽出人來作進一步調查.
(1)從抽出的人中選出人來擔任正副組長,求這兩個組長中至少有一人的閱讀量少于萬字的概率;
(2)為進一步了解廣泛閱讀對今后學習的影響,現(xiàn)從抽出的人中挑選出閱讀量低于萬字和高于萬字的同學,再從中隨機選出人來長期跟蹤調查,求這人中來自閱讀量為萬到萬字的人數(shù)的概率分布列和期望值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一個風雨交加的夜里,某水庫閘房(設為A)到某指揮部(設為B)的電話線路有一處發(fā)生了故障.這是一條長的線路,想要盡快地查出故障所在.如果沿著線路一小段小段地查找,困難很多,每查一小段需要很長時間.
(1)維修線路的工人師傅隨身帶著話機,他應怎樣工作,才能每查一次,就把待查的線路長度縮減一半?
(2)要把故障可能發(fā)生的范圍縮小到,最多要查多少次?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(題文)隨著手機的發(fā)展,“微信”越來越成為人們交流的一種方式.某機構對“使用微信交流”的態(tài)度進行調查,隨機抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”的贊成人數(shù)如下表:
年齡(單位:歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
(1)若以“年齡45歲為分界點”,由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認為“使用微信交流”的態(tài)度與人的年齡有關.
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計 | |
贊成的人數(shù) | |||
不贊成的人數(shù) | |||
合計 |
(2)若從年齡在[25,35)和[55,65)的被調查人中按照分層抽樣的方法選取6人進行追蹤調查,并給予其中3人“紅包”獎勵,求3人中至少有1人年齡在[55,65)的概率.
參考公式:,.
參考數(shù)據(jù):
0.100 | ||||
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知五面體ABCDEF中,四邊形CDEF為矩形,,CD=2DE=2AD=2AB=4,AC=,.
(1)求證:AB平面ADE;
(2)求平面EBC與平面BCF所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓O:x2+y2=9及點C(2,1),過點C的直線l與圓O交于P,Q兩點,當△OPQ的面積最大時,直線l的方程為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com