【題目】如圖,三棱柱ABC﹣A1B1C1的側(cè)面AA1B1B是菱形,側(cè)面AA1C1C是矩形,平面AA1C1C⊥平面AA1B1B,∠BAA1,AA1=2AC=2,O為AA1的中點.
(1)求證:OC⊥BC1;
(2)求點C1到平面ABC的距離.
【答案】(1)證明見解析 (2)
【解析】
(1)連接,AA1=2AC=2,O為AA1的中點,可得
,可證
,側(cè)面AA1B1B是菱形,
,有
,結(jié)合平面AA1C1C⊥平面AA1B1B,可證
平面AA1C1C,可得
,進而有
平面
,即可證明結(jié)論;
(2),可證
平面
,點C1到平面ABC的距離與點A1到平面ABC的距離相等,由(1)
平面AA1C1C,求出
的面積,用等體積法
,即可求解.
(1)證明:連接,AA1=2AC=2,O為AA1的中點,
,
,
因為側(cè)面AA1B1B是菱形,,
所以為等邊三角形,O為AA1的中點,
所以,平面AA1C1C⊥平面AA1B1B,
平面AA1C1C平面AA1B1B
平面AA1B1B,
所以平面AA1C1C,同理可證
平面AA1B1B,
平面AA1C1C,所以
,
平面
,所以
平面
,
因為平面
,所以
;
(2)因為側(cè)面AA1C1C是矩形,所以,
平面
,
平面
,
所以平面
,
點C1到平面ABC的距離與點A1到平面ABC的距離相等,
設(shè)C1到平面ABC的距離為,
由(1)得平面AA1C1C,
平面AA1B1B,
所以,
,
,
所以點C1到平面ABC的距離為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某專賣店銷售一新款服裝,日銷售量(單位為件)f(n) 與時間n(1≤n≤30、nN*)的函數(shù)關(guān)系如下圖所示,其中函數(shù)f(n) 圖象中的點位于斜率為 5 和-3 的兩條直線上,兩直線交點的橫坐標(biāo)為m,且第m天日銷售量最大.
(Ⅰ)求f(n) 的表達式,及前m天的銷售總數(shù);
(Ⅱ)按以往經(jīng)驗,當(dāng)該專賣店銷售某款服裝的總數(shù)超過 400 件時,市面上會流行該款服裝,而日銷售量連續(xù)下降并低于 30 件時,該款服裝將不再流行.試預(yù)測本款服裝在市面上流行的天數(shù)是否會超過 10 天?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合是滿足下列性質(zhì)的函數(shù)
的全體:存在實數(shù)
、
,對于定義域內(nèi)任意
,均有
成立,稱數(shù)對
為函數(shù)
的“伴隨數(shù)對”.
(1)判斷函數(shù)是否屬于集合
,并說明理由;
(2)若函數(shù),求滿足條件的函數(shù)
的所有“伴隨數(shù)對”;
(3)若、
都是函數(shù)
的“伴隨數(shù)對”,當(dāng)
時,
,當(dāng)
時,
,求當(dāng)
時,函數(shù)
的解析式和零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,
為實數(shù),函數(shù)
,且函數(shù)
是偶函數(shù),函數(shù)
在區(qū)間
上是減函數(shù),且在區(qū)間
上是增函數(shù).
(1)求函數(shù)的解析式;
(2)求實數(shù)的值;
(3)設(shè),問是否存在實數(shù)
,使得
在區(qū)間
上有最小值-2?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖一塊長方形區(qū)域,
,
,在邊
的中點
處有一個可轉(zhuǎn)動的探照燈,其照射角
始終為
,設(shè)
,探照燈照射在長方形
內(nèi)部區(qū)域的面積為
.
(1)當(dāng)時,求
關(guān)于
的函數(shù)關(guān)系式;
(2)當(dāng)時,求
的最大值;
(3)若探照燈每9分鐘旋轉(zhuǎn)“一個來回”(自
轉(zhuǎn)到
,再回到
,稱“一個來回”,忽略
在
及
處所用的時間),且轉(zhuǎn)動的角速度大小一定,設(shè)
邊上有一點
,且
,求點
在“一個來回”中被照到的時間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合函數(shù)
,函數(shù)
的值域為
,
(1)若不等式的解集為
,求
的值;
(2)在(1)的條件下,若恒成立,求
的取值范圍;
(3)若關(guān)于的不等式
的解集
,求實數(shù)
的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:(
)的焦距為
,且右焦點F與短軸的兩個端點組成一個正三角形.若直線l與橢圓C交于
、
,且在橢圓C上存在點M,使得:
(其中O為坐標(biāo)原點),則稱直線l具有性質(zhì)H.
(1)求橢圓C的方程;
(2)若直線l垂直于x軸,且具有性質(zhì)H,求直線l的方程;
(3)求證:在橢圓C上不存在三個不同的點P、Q、R,使得直線、
、
都具有性質(zhì)H.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種水果按照果徑大小可分為四類:標(biāo)準(zhǔn)果、優(yōu)質(zhì)果、精品果、禮品果.某采購商從采購的一批水果中隨機抽取個,利用水果的等級分類標(biāo)準(zhǔn)得到的數(shù)據(jù)如下:
等級 | 標(biāo)準(zhǔn)果 | 優(yōu)質(zhì)果 | 精品果 | 禮品果 |
個數(shù) | 10 | 30 | 40 | 20 |
(1)若將頻率是為概率,從這個水果中有放回地隨機抽取
個,求恰好有
個水果是禮品果的概率.(結(jié)果用分數(shù)表示)
(2)用樣本估計總體,果園老板提出兩種購銷方案給采購商參考.
方案:不分類賣出,單價為
元
.
方案:分類賣出,分類后的水果售價如下:
等級 | 標(biāo)準(zhǔn)果 | 優(yōu)質(zhì)果 | 精品果 | 禮品果 |
售價(元/kg) | 16 | 18 | 22 | 24 |
從采購單的角度考慮,應(yīng)該采用哪種方案?
(3)用分層抽樣的方法從這個水果中抽取
個,再從抽取的
個水果中隨機抽取
個,
表示抽取的是精品果的數(shù)量,求
的分布列及數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)
,如果滿足:對任意
,存在常數(shù)
,都有
成立,則稱
是
上的有界函數(shù),其中
稱為函數(shù)
的上界.
(1)設(shè),判斷
在
上是否為有界函數(shù),若是,請說明理由,并寫出
的所有上界
的集合;若不是,也請說明理由;
(2)若函數(shù)在
上是以
為上界的有界函數(shù),求實數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com