【題目】如圖,在半徑為3m的 圓形(O為圓心)鋁皮上截取一塊矩形材料OABC,其中點(diǎn)B在圓弧上,點(diǎn)A、C在兩半徑上,現(xiàn)將此矩形鋁皮OABC卷成一個(gè)以AB為母線的圓柱形罐子的側(cè)面(不計(jì)剪裁和拼接損耗),設(shè)矩形的邊長(zhǎng)AB=xm,圓柱的體積為Vm3 .
(1)寫出體積V關(guān)于x的函數(shù)關(guān)系式,并指出定義域;
(2)當(dāng)x為何值時(shí),才能使做出的圓柱形罐子體積V最大?最大體積是多少?
【答案】
(1)解:連接OB,在Rt△OAB中,∵AB=x,∴OA= ,
設(shè)圓柱底面半徑為r,則 =2πr,
即4π2r2=9﹣x2,
∴V=πr2x= ,其中0<x<3
(2)解:由V′= =0及0<x<3,得x= ,
列表如下:
x | (0, ) | ( ,3) | |
V′ | + | 0 | ﹣ |
V | 極大值 |
所以當(dāng)x= 時(shí),V有極大值,也是最大值為 .…(14分)
答:當(dāng)x為 m時(shí),做出的圓柱形罐子體積最大,最大體積是 m3.
【解析】(1)連接OB,在Rt△OAB中,由AB=x,利用勾股定理可得OA= ,設(shè)圓柱底面半徑為r,則 =2πr,即可得出r.利用V=πr2x(其中0<x<30)即可得出.(2)利用導(dǎo)數(shù)V′,得出其單調(diào)性,即可得出結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U=R,A={x|x≥3},B={x|x2﹣8x+7≤0},C={x|x≥a﹣1}
(1)求A∩B,A∪B;
(2)若A∩C=C,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+alnx. (Ⅰ)當(dāng)a=﹣2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)若g(x)=f(x)+ 在[1,+∞)上是單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 通項(xiàng)公式為 . (Ⅰ)計(jì)算f(1),f(2),f(3)的值;
(Ⅱ)比較f(n)與1的大小,并用數(shù)學(xué)歸納法證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
某工廠有100名工人接受了生產(chǎn)1000臺(tái)某產(chǎn)品的總?cè)蝿?wù),每臺(tái)產(chǎn)品由9個(gè)甲型裝置和3個(gè)乙型裝置配套組成,每個(gè)工人每小時(shí)能加工完成1個(gè)甲型裝置或3個(gè)乙型裝置.現(xiàn)將工人分成兩組分別加工甲型和乙型裝置.設(shè)加工甲型裝置的工人有x人,他們加工完甲型裝置所需時(shí)間為t1小時(shí),其余工人加工完乙型裝置所需時(shí)間為t2小時(shí).
設(shè)f(x)=t1+t2.
(Ⅰ)求f(x)的解析式,并寫出其定義域;
(Ⅱ)當(dāng)x等于多少時(shí),f(x)取得最小值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù)f(x)=2x3-3(a+1)x2+6ax,a∈R.
(Ⅰ)曲線y=f(x)在x=0處的切線的斜率為3,求a的值;
(Ⅱ)若對(duì)于任意x∈(0,+∞),f(x)+f(-x)≥12lnx恒成立,求a的取值范圍;
(Ⅲ)若a>1,設(shè)函數(shù)f(x)在區(qū)間[1,2]上的最大值、最小值分別為M(a)、m(a),
記h(a)=M(a)-m(a),求h(a)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知 = .
(1)求角A的大小;
(2)當(dāng)a=6時(shí),求△ABC面積的最大值,并指出面積最大時(shí)△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某石化集團(tuán)獲得了某地深海油田區(qū)塊的開采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分幾口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來布置井位進(jìn)行全面勘探,由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用,勘探初期數(shù)據(jù)資料見如表:
(參考公式和計(jì)算結(jié)果:
, , , )
(1)1~6號(hào)舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求的值,并估計(jì)的預(yù)報(bào)值.
(2)現(xiàn)準(zhǔn)備勘探新井,若通過1,3,5,7號(hào)并計(jì)算出的, 的值(, 精確到0.01)相比于(1)中的, ,值之差不超過10%,則使用位置最接近的已有舊井,否則在新位置打開,請(qǐng)判斷可否使用舊井?
(3)設(shè)出油量與勘探深度的比值不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井?dāng)?shù)的分布列與數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com