17.求出一個(gè)數(shù)學(xué)問題的正確結(jié)論后,將其作為條件之一,提出與原來問題有關(guān)的新問題,我們把它稱為原來問題的一個(gè)“逆向”問題.

    例如,原來問題是“若正四棱錐底面邊長(zhǎng)為4,側(cè)棱長(zhǎng)為3,求該正四棱錐的體積”.求出體積后,它的一個(gè)“逆向”問題可以是“若正四棱錐底面邊長(zhǎng)為4,體積為,求側(cè)棱長(zhǎng)”;也可以是“若正四棱錐的體積為,求所有側(cè)面面積之和的最小值”.

    試給出問題“在平面直角坐標(biāo)系中,求點(diǎn)到直線的距離.”的一個(gè)有意義的“逆向”問題,并解答你所給出的“逆向”問題.

(ⅰ) 在本題的解答過程中,如果考生所給問題的意義不大,那么在評(píng)分標(biāo)準(zhǔn)的第二階段所列6分中,應(yīng)只給2分,但第三階段所列4分由考生對(duì)自己所給問題的解答正確與否而定.

(ⅱ) 當(dāng)考生所給出的“逆向”問題與所列解答不同,可參照所列評(píng)分標(biāo)準(zhǔn)的精神進(jìn)行評(píng)分.

[解] 點(diǎn)到直線的距離為.   

“逆向”問題可以是:

(1) 求到直線的距離為2的點(diǎn)的軌跡方程.   

[解] 設(shè)所求軌跡上任意一點(diǎn)為,則

所求軌跡為.   

(2) 若點(diǎn)到直線的距離為2,求直線的方程.   

 [解] ,化簡(jiǎn)得,,

所以,直線的方程為.   

意義不大的“逆向”問題可能是:

(3) 點(diǎn)是不是到直線的距離為2的一個(gè)點(diǎn)?   

[解] 因?yàn)?IMG align="absmiddle" height=45 src="http://thumb.zyjl.cn/pic1/1898/img/06/71/68/189806716810016668/21.gif" width=96 align=absMiddle v:shapes="_x0000_i1152">,

所以點(diǎn)是到直線的距離為2的一個(gè)點(diǎn).   

(4) 點(diǎn)是不是到直線的距離為2的一個(gè)點(diǎn)?    

[解] 因?yàn)?IMG align="absmiddle" height=45 src="http://thumb.zyjl.cn/pic1/1898/img/06/71/68/189806716810016668/26.gif" width=119 align=absMiddle v:shapes="_x0000_i1157">,

所以點(diǎn)不是到直線的距離為2的一個(gè)點(diǎn).   

(5) 點(diǎn)是不是到直線的距離為2的一個(gè)點(diǎn)?  

[解] 因?yàn)?IMG align="absmiddle" height=45 src="http://thumb.zyjl.cn/pic1/1898/img/06/71/68/189806716810016668/31.gif" width=135 align=absMiddle v:shapes="_x0000_i1162">,

所以點(diǎn)不是到直線的距離為2的一個(gè)點(diǎn). 

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2px(p>0)上任意一點(diǎn)到焦點(diǎn)F的距離比到y(tǒng)軸的距離大1.
(1)求拋物線C的方程;
(2)若過焦點(diǎn)F的直線交拋物線于M、N兩點(diǎn),M在第一象限,且|MF|=2|NF|,求直線MN的方程;
(3)求出一個(gè)數(shù)學(xué)問題的正確結(jié)論后,將其作為條件之一,提出與原來問題有關(guān)的新問題,我們把它稱為原來問題的一個(gè)“逆向”問題.
例如,原來問題是“若正四棱錐底面邊長(zhǎng)為4,側(cè)棱長(zhǎng)為3,求該正四棱錐的體積”.求出體積
16
3
后,它的一個(gè)“逆向”問題可以是“若正四棱錐底面邊長(zhǎng)為4,體積為
16
3
,求側(cè)棱長(zhǎng)”;也可以是“若正四棱錐的體積為
16
3
,求所有側(cè)面面積之和的最小值”.
現(xiàn)有正確命題:過點(diǎn)A(-
p
2
,0)
的直線交拋物線C:y2=2px(p>0)于P、Q兩點(diǎn),設(shè)點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為R,則直線RQ必過焦點(diǎn)F.
試給出上述命題的“逆向”問題,并解答你所給出的“逆向”問題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•上海)求出一個(gè)數(shù)學(xué)問題的正確結(jié)論后,將其作為條件之一,提出與原來問題有關(guān)的新問題,我們把它稱為原來問題的一個(gè)“逆向”問題.
例如,原來問題是“若正四棱錐底面邊長(zhǎng)為4,側(cè)棱長(zhǎng)為3,求該正四棱錐的體積”.求出體積
16
3
后,它的一個(gè)“逆向”問題可以是“若正四棱錐底面邊長(zhǎng)為4,體積為
16
3
,求側(cè)棱長(zhǎng)”;也可以是“若正四棱錐的體積為
16
3
,求所有側(cè)面面積之和的最小值”.
試給出問題“在平面直角坐標(biāo)系xoy中,求點(diǎn)P(2,1)到直線3x+4y=0的距離.”的一個(gè)有意義的“逆向”問題,并解答你所給出的“逆向”問題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線C:y2=2px(p>0)上任意一點(diǎn)到焦點(diǎn)F的距離比到y(tǒng)軸的距離大1.
(1)求拋物線C的方程;
(2)若過焦點(diǎn)F的直線交拋物線于M、N兩點(diǎn),M在第一象限,且|MF|=2|NF|,求直線MN的方程;
(3)求出一個(gè)數(shù)學(xué)問題的正確結(jié)論后,將其作為條件之一,提出與原來問題有關(guān)的新問題,我們把它稱為原來問題的一個(gè)“逆向”問題.
例如,原來問題是“若正四棱錐底面邊長(zhǎng)為4,側(cè)棱長(zhǎng)為3,求該正四棱錐的體積”.求出體積數(shù)學(xué)公式后,它的一個(gè)“逆向”問題可以是“若正四棱錐底面邊長(zhǎng)為4,體積為數(shù)學(xué)公式,求側(cè)棱長(zhǎng)”;也可以是“若正四棱錐的體積為數(shù)學(xué)公式,求所有側(cè)面面積之和的最小值”.
現(xiàn)有正確命題:過點(diǎn)數(shù)學(xué)公式的直線交拋物線C:y2=2px(p>0)于P、Q兩點(diǎn),設(shè)點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為R,則直線RQ必過焦點(diǎn)F.
試給出上述命題的“逆向”問題,并解答你所給出的“逆向”問題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海 題型:解答題

求出一個(gè)數(shù)學(xué)問題的正確結(jié)論后,將其作為條件之一,提出與原來問題有關(guān)的新問題,我們把它稱為原來問題的一個(gè)“逆向”問題.
例如,原來問題是“若正四棱錐底面邊長(zhǎng)為4,側(cè)棱長(zhǎng)為3,求該正四棱錐的體積”.求出體積
16
3
后,它的一個(gè)“逆向”問題可以是“若正四棱錐底面邊長(zhǎng)為4,體積為
16
3
,求側(cè)棱長(zhǎng)”;也可以是“若正四棱錐的體積為
16
3
,求所有側(cè)面面積之和的最小值”.
試給出問題“在平面直角坐標(biāo)系xoy中,求點(diǎn)P(2,1)到直線3x+4y=0的距離.”的一個(gè)有意義的“逆向”問題,并解答你所給出的“逆向”問題.

查看答案和解析>>

同步練習(xí)冊(cè)答案