【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,已知直線l的參數(shù)方程為(t為參數(shù)),圓C的極坐標(biāo)方程為
(1)求直線l和圓C的直角坐標(biāo)方程;
(2)若點(diǎn)在圓C上,求的取值范圍.
【答案】(1)直線l的直角坐標(biāo)方程為;圓C的直角坐標(biāo)方程為;
(2);
【解析】
(1)由直線l的參數(shù)方程,消去參數(shù)t,即可得到直線l的直角坐標(biāo)方程,再由極坐標(biāo)與直角坐標(biāo)的互化公式,即可求得圓C的直角坐標(biāo)方程;
(2)設(shè),化簡(jiǎn)得,結(jié)合三角函數(shù)的性質(zhì),即可求解.
(1)由題意,直線l的參數(shù)方程為(t為參數(shù)),
消去參數(shù)t,得直線l的直角坐標(biāo)方程為,
又由圓C的極坐標(biāo)方程為,即,
又因?yàn)?/span>,,,
可得圓C的直角坐標(biāo)方程為.
(2)因?yàn)辄c(diǎn)在圓C上,可設(shè),
所以,
因?yàn)?/span>,所以的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(1)討論在上的單調(diào)性.
(2)當(dāng)時(shí),若在上的最大值為,證明:函數(shù)在內(nèi)有且僅有2個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),是兩條不同的直線,,,是三個(gè)不同的平面,給出下列四個(gè)命題:
①若,,則,為異面直線; ②若,,,則;
③若,,則; ④若,,,則.
則上述命題中真命題的序號(hào)為( )
A.①②B.③④C.②D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓: 經(jīng)過(guò)橢圓: 的左右焦點(diǎn),且與橢圓在第一象限的交點(diǎn)為,且三點(diǎn)共線,直線交橢圓于, 兩點(diǎn),且().
(1)求橢圓的方程;
(2)當(dāng)三角形的面積取得最大值時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,點(diǎn)E是BC邊的中點(diǎn),將△ABD沿BD折起,使平面ABD⊥平面BCD,連接AE,AC,DE,得到如圖2所示的幾何體.
(Ⅰ)求證:AB⊥平面ADC;
(Ⅱ)若AD=2,直線CA與平面ABD所成角的正弦值為,求二面角E-AD-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,,,,為等邊三角形,且平面平面,為中點(diǎn).
(1)求證:平面;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某射擊小組有甲、乙、丙三名射手,已知甲擊中目標(biāo)的概率是,甲、丙二人都沒(méi)有擊中目標(biāo)的概率是,乙、丙二人都擊中目標(biāo)的概率是.甲乙丙是否擊中目標(biāo)相互獨(dú)立.
(1)求乙、丙二人各自擊中目標(biāo)的概率;
(2)設(shè)乙、丙二人中擊中目標(biāo)的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在所有棱長(zhǎng)都相等的三棱錐中,D,E,F分別是AB,BC,CA的中點(diǎn),下列四個(gè)命題:
(1)平面PDF;(2)平面;
(3)平面平面;(4)平面平面.
其中正確命題的序號(hào)為________.
A.(2)(3)B.(1)(3)C.(2)(4)D.(1)(4)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com