【題目】在“新零售”模式的背景下,某大型零售公司為推廣線下分店,計劃在S市的A區(qū)開設分店.為了確定在該區(qū)開設分店的個數(shù),該公司對該市已開設分店的其他區(qū)的數(shù)據作了初步處理后得到下列表格.記x表示在各區(qū)開設分店的個數(shù),y表示這x個分店的年收入之和.
x(個) | 2 | 3 | 4 | 5 | 6 |
y(百萬元) | 2.5 | 3 | 4 | 4.5 | 6 |
(1)該公司經過初步判斷,可用線性回歸模型擬合y與x的關系,求y關于x的線性回歸方程;
(2)假設該公司在A區(qū)獲得的總年利潤z(單位:百萬元)與x,y之間滿足的關系式為:,請結合(1)中的線性回歸方程,估算該公司應在A區(qū)開設多少個分店,才能使A區(qū)平均每個分店的年利潤最大?
附:回歸方程中的斜率和截距的最小二乘估計公式分別為:
, .
(參考數(shù)據:,)
科目:高中數(shù)學 來源: 題型:
【題目】對于定義域為的函數(shù),若同時滿足下列三個條件:① ;② 當,且時,都有 ;③ 當,且時,都有, 則稱為“偏對稱函數(shù)”.現(xiàn)給出下列三個函數(shù): ; ; 則其中是“偏對稱函數(shù)”的函數(shù)個數(shù)為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:的兩個焦點分別為,點M(1,0)與橢圓短軸的兩個端點的連線相互垂直.
(1)求橢圓C的方程;
(2)過點M(1,0)的直線與橢圓C相交于A、B兩點,設點N(3,2),記直線AN、BN的斜率分別為k1、k2,求證:k1+k2為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下命題正確的是( )
A. 若直線,,,則直線a,b異面
B. 空間內任意三點可以確定一個平面
C. 空間四點共面,則其中必有三點共線
D. 直線,,,則直線a,b異面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在處取得極小值.
(1)求實數(shù)的值;
(2)設,其導函數(shù)為,若的圖象交軸于兩點且,設線段的中點為,試問是否為的根?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域在上的函數(shù)滿足對于任意的,都有,當且僅當時,成立.
(1)設,求證;
(2)設,若,試比較x1與x2的大小;
(3)若,解關于x的不等式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年10月1日為慶祝中國人民共和國成立70周年在北京天安門廣場舉行了盛大的閱兵儀式,共有580臺(套)裝備、160余架各型飛機接受檢閱,受閱裝備均為中國國產現(xiàn)役主戰(zhàn)裝備,其中包括部分首次公開亮相的新型裝備.例如,在無人作戰(zhàn)第三方隊中就包括了兩型偵察干擾無人機,可以在遙控設備或自備程序控制操縱的情況下執(zhí)行任務,進行對敵方通訊設施的電磁壓制和干擾,甚至壓制敵人的防空系統(tǒng).某作戰(zhàn)部門對某處的戰(zhàn)場實施“電磁干擾”實驗,據測定,該處的“干擾指數(shù)”與無人機干擾源的強度和距離之比成正比,比例系數(shù)為常數(shù)(),現(xiàn)已知相距36的、兩處配置兩架無人機干擾源,其對敵干擾的強度分別為1和(),它們連線段上任意一點處的干擾指數(shù)等于兩機對該處的干擾指數(shù)之和,設().
(1)試將表示為的函數(shù),指出其定義域;
(2)當,時,試確定“干擾指數(shù)”最小時所處位置.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】十九大以來,國家深入推進精準脫貧,加大資金投入,強化社會幫扶,為了更好的服務于人民,派調查組到某農村去考察和指導工作.該地區(qū)有200戶農民,且都從事水果種植,據了解,平均每戶的年收入為3萬元.為了調整產業(yè)結構,調查組和當?shù)卣疀Q定動員部分農民從事水果加工,據估計,若能動員戶農民從事水果加工,則剩下的繼續(xù)從事水果種植的農民平均每戶的年收入有望提高,而從事水果加工的農民平均每戶收入將為萬元.
(1)若動員戶農民從事水果加工后,要使從事水果種植的農民的總年收入不低于動員前從事水果種植的農民的總年收入,求的取值范圍;
(2)在(1)的條件下,要使這200戶農民中從事水果加工的農民的總收入始終不高于從事水果種植的農民的總收入,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com