(幾何證明選講選做題)如圖,為圓的直徑,為圓上一點,
和過的切線互相垂直,垂足為,過的切線交過的切線于
交圓,若,則=        .

試題分析:解:連接AC、AB、OC,

∵PT與圓O相切于點C,∴OC⊥PT,同理可得BT⊥AB,四邊形OBTC中,∠OCT=∠OBT=90°,∴∠COB+∠CTB=180°,可得∠COB=180°-120°=60°,∵OC=OB,∴△OBC是等邊三角形,可得∠OBC=60°,∵AB是圓O的直徑,∴AC⊥BC,,Rt△ABC中,AB=4,可得AC=ABsin60°=2 ∵PC與圓O相切于點C,∴∠PCA=∠CBA=60°∵AP⊥PC,∴Rt△PAC中,PC=ACcos60°=∵PC與圓O相切于點C,PQB是圓O的割線,∴PQ•PB=PC2=3,故答案為:3
點評:本題借助于圓的切線和含有60°的直角三角形,求切線長的值,著重考查了直角三角形中三角函數(shù)的定義、四邊形內(nèi)角和與圓中的比例線段等知識,屬于基礎題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)選修4-1:幾何證明選講
如圖所示,已知與⊙相切,為切點,為割線,
,相交于點,上一點,且·.

(1)求證:;
(2)求證:·=·.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,圓的外接圓,過點的切線交的延長線于點,且,,則的長為   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,AB為圓O的直徑,PA為圓O的切線,PB與圓O相交于D,PA=3,,則PD=        ,AB=          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,⊙O內(nèi)切△ABC的邊于D、E、F,AB=AC,連接AD交⊙O于點H,直線HF交BC的延長線于點G.

⑴證明:圓心O在直線AD上;
⑵證明:點C是線段GD的中點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

A.對任意,恒成立,則滿足________.
B.在極坐標系中,點到直線的距離是_______.
C.如圖,點P在圓O直徑AB的延長線上,且PB=OB=2, PC切圓O于點C,CD⊥AB于點D,則CD=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,為⊙的直徑,,弦于點.若,,則_____.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,將矩形紙片ABCD沿過點B的直線折疊,使點A落在BC上的點M處,還原后,再沿過點M的直線折疊,使點A落在BC上的點N處,由此可求出的角的正切值是       .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如上圖,已知矩形OABC的面積是,它的對角線OB與雙曲線相交于點D,且OB:OD=5:3,則k=      .

查看答案和解析>>

同步練習冊答案