【題目】某校高一某班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖因事故都受到不同程度的損壞,但可見部分如下,據(jù)此解答如下問題:

(1)求分?jǐn)?shù)在[50,60)的頻率及全班人數(shù);

(2)求分?jǐn)?shù)在[80,90)的頻數(shù),并計(jì)算頻率分布直方圖中[80,90)間的矩形的高;

(3)若規(guī)定:90(包含90)以上為優(yōu)秀,現(xiàn)從分?jǐn)?shù)在80(包含80)以上的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中至少有一份優(yōu)秀的概率.

【答案】(1)25人;(2)0.016;(3)

【解析】

1)由頻率分布直方圖能求出分?jǐn)?shù)在[50,60)的頻率,由莖葉圖得分類在[50,60)的人數(shù),由此能求出全班人數(shù).(2)由莖葉圖能求出分?jǐn)?shù)在[80,90)之間的頻數(shù),由此能求出頻率分布直方圖中[80,90)間的矩形的高.(3)利用古典概型的概率公式解答.

解:(1)分?jǐn)?shù)在[5060)的頻率為0.008×100.08.

由莖葉圖知,分?jǐn)?shù)在[5060)的頻數(shù)為2,所以全班人數(shù)為.

(2)分?jǐn)?shù)在[80,90)的頻數(shù)為25271024,

頻率分布直方圖中[80,90)間的矩形的高為.

(3)(2)可知分?jǐn)?shù)在[80,100)的人數(shù)為426.

設(shè)分?jǐn)?shù)在[80,90)的試卷為A,B,C,D,分?jǐn)?shù)在[90,100]的試卷為a,b.

則從6份卷中任取2份,共有15個(gè)基本事件,

分別是AB,AC,AD,Aa,Ab,BC,BD,Ba,BbCD,Ca,Cb,DaDb,ab,

其中至少有一份優(yōu)秀的事件共有9個(gè),

分別是AaAb,Ba,Bb,Ca,CbDa,Dbab,

∴在抽取的試卷中至少有一份優(yōu)秀的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)是定義域?yàn)?/span>R的奇函數(shù),且滿足fx2)=fx+2),當(dāng)x0,2)時(shí),fx)=lnx2x+1),則方程fx)=0在區(qū)間[08]上的解的個(gè)數(shù)是( 。

A.3B.5C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),命題p:函數(shù)內(nèi)單調(diào)遞增;q:函數(shù)僅在處有極值.

1)若命題q是真命題,求a的取值范圍;

2)若命題是真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象經(jīng)過點(diǎn),且在點(diǎn)處的切線方程為.

(1)求函數(shù)的解析式;

(2)求函數(shù)的單調(diào)區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 設(shè)命題p:函數(shù)y在定義域上為減函數(shù);命題qa,b(0,+∞),當(dāng)ab=1時(shí),=3.以下說法正確的是(  )

A. pq為真B. pq為真

C. pqD. p,q均假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1)求ff1)),ff1));

2)畫出fx)的圖象;

3)若fx=a,問a為何值時(shí),方程沒有根?有一個(gè)根??jī)蓚(gè)根?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營(yíng)一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價(jià)格依次為60/盒、65/盒、80/盒、90/盒.為增加銷量,李明對(duì)這四種水果進(jìn)行促銷:一次購買水果的總價(jià)達(dá)到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會(huì)得到支付款的80%

①當(dāng)x=10時(shí),顧客一次購買草莓和西瓜各1盒,需要支付__________元;

②在促銷活動(dòng)中,為保證李明每筆訂單得到的金額均不低于促銷前總價(jià)的七折,則x的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線)的焦點(diǎn)F且斜率為1的直線交拋物線CM,N兩點(diǎn),且

1)求p的值;

2)拋物線C上一點(diǎn),直線(其中)與拋物線C交于A,B兩個(gè)不同的點(diǎn)(A,B均與點(diǎn)Q不重合).設(shè)直線QA,QB的斜率分別為.

i)直線l是否過定點(diǎn)?如果是,請(qǐng)求出所有定點(diǎn);如果不是,請(qǐng)說明理由;

ii)設(shè)點(diǎn)T在直線l上,且滿足,其中為坐標(biāo)原點(diǎn).當(dāng)線段最長(zhǎng)時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】昆明市某中學(xué)的環(huán)保社團(tuán)參照國(guó)家環(huán)境標(biāo)準(zhǔn)制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級(jí)對(duì)應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會(huì)超過300),該社團(tuán)將該校區(qū)在2018年100天的空氣質(zhì)量指數(shù)監(jiān)測(cè)數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如圖4,把該直方圖所得頻率估計(jì)為概率.

空氣質(zhì)量指數(shù)

空氣質(zhì)量等級(jí)

1級(jí)優(yōu)

2級(jí)良

3級(jí)輕度污染

4度中度污染

5度重度污染

6級(jí)嚴(yán)重污染

(1)請(qǐng)估算2019年(以365天計(jì)算)全年空氣質(zhì)量?jī)?yōu)良的天數(shù)(未滿一天按一天計(jì)算);

(2)用分層抽樣的方法共抽取10天,則空氣質(zhì)量指數(shù)在,的天數(shù)中各應(yīng)抽取幾天?

(3)已知空氣質(zhì)量等級(jí)為1級(jí)時(shí)不需要凈化空氣,空氣質(zhì)量等級(jí)為2級(jí)時(shí)每天需凈化空氣的費(fèi)用為2000元,空氣質(zhì)量等級(jí)為3級(jí)時(shí)每天需凈化空氣的費(fèi)用為4000元若在(2)的條件下,從空氣質(zhì)量指數(shù)在的天數(shù)中任意抽取兩天,求這兩天的凈化空氣總費(fèi)用的分布列

查看答案和解析>>

同步練習(xí)冊(cè)答案