【題目】如圖 1,在直角梯形中, ,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 為的中點,如圖 2.
(1)求證: 平面;
(2)求證: 平面;
(3)求點到平面的距離.
【答案】(1)見解析;(2)見解析;(3).
【解析】試題分析:(1)在平面內(nèi)找到與直線平行的直線,通過三角形的中位線證明直線AB與直線MN平行且相等,從而證明,可證得直線平面.
(2)通過證明直線BC垂直于平面BDE內(nèi)的兩條相交直線BD,ED可證得直線平面.
(3)利用等體積法,可求得點D 到平面BEC的距離.
試題解析: (1)證明:取中點,連結.
在中, 分別為的中點,
所以,且.
由已知,
所以四邊形為平行四邊形.
所以.
又因為平面,且平面,
所以平面.
(2)證明:在正方形中, ,
又因為平面平面,且平面平面,
所以平面.
所以
在直角梯形中, ,可得.
在中, .
所以.
所以平面.
(3)由(2)知,
所以,又因為平面
又.
所以, 到面的距離為
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形中, , , , , 是的中點, 是與的交點,將沿折起到的位置,如圖2.
圖1 圖2
(1)證明: 平面;
(2)若平面平面,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定點, 為圓上任意一點,線段上一點滿足,直線上一點,滿足.
(1)當在圓周上運動時,求點的軌跡的方程;
(2)若直線與曲線交于兩點,且以為直徑的圓過原點,求證:直線與不可能相切.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在棱長為1的正方體中,點, 分別是側面與底面的中心,則下列命題中錯誤的個數(shù)為( )
①平面; ②異面直線與所成角為;
③與平面垂直; ④.
A. 0 B. 1 C. 2 D. 3
【答案】A
【解析】對于①,∵DF,DF平面, 平面,∴平面,正確;
對于②,∵DF,∴異面直線與所成角即異面直線與所成角,△為等邊三角形,故異面直線與所成角為,正確;
對于③,∵⊥, ⊥CD,且CD=D,∴⊥平面,即⊥平面正確;
對于④,,正確,
故選:A
【題型】單選題
【結束】
8
【題目】已知函數(shù)在區(qū)間上單調遞增,則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系xoy中,其中A(0,0),B(2,0),C(1,1),D(0,1),圖中圓弧所在圓的圓心為點C,半徑為,且點P在圖中陰影部分(包括邊界)運動.若,其中,則 的取值范圍是( )
A. [2,3+] B. [2,3+] C. [3-, 3+] D. [3-, 3+]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,橢圓的長軸長是短軸長的2倍,是橢圓的右焦點,直線的斜率為,為坐標原點.
(1)求橢圓的方程;
(2)設過點的動直線與橢圓相交于兩點.當的面積最大時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為對南康區(qū)和于都縣兩區(qū)縣某次聯(lián)考成績進行分析,隨機抽查了兩地一共10000名考生的成績,根據(jù)所得數(shù)據(jù)畫了如下的樣本頻率分布直方圖.
(1)求成績在的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)平均數(shù);
(3)為了分析成績與班級、學校等方面的關系,必須按成績再從這10000人中用分層抽樣方法抽出20人作進一步分析,則成績在的這段應抽多少人?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓C與y軸相切于點T(0,2),與x軸的正半軸交于兩點 (點在點的左側),且.
(1)求圓C的方程;(2)過點任作一直線與圓O: 相交于兩點,連接,求證: 定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在幾何體中,四邊形為菱形,對角線與的交點為,四邊形為梯形, .
(Ⅰ)若,求證: 平面;
(Ⅱ)求證:平面平面;
(Ⅲ)若, , ,求與平面所成角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com