精英家教網 > 高中數學 > 題目詳情

【題目】已知集合M={1,2,3},N={1,2,3,4},定義函數f:M→N.若點A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圓圓心為D,且 ,則滿足條件的函數f(x)有(
A.6個
B.10個
C.12個
D.16個

【答案】C
【解析】解:由 ,說明△ABC是等腰三角形,且BA=BC,必有f(1)=f(3),f(1)≠f(2);
點A(1,f(1))、當f(1)=1=f(3)時f(2)=2、3、4,三種情況.
f(1)=f(3)=2;f(2)=1、3、4,有三種.
f(1)=f(3)=3;f(2)=2、1、4,有三種.
f(1)=f(3)=4;f(2)=2、3、1,有三種.
因而滿足條件的函數f(x)有12種.
故選C
【考點精析】根據題目的已知條件,利用向量的共線定理和分類加法計數原理的相關知識可以得到問題的答案,需要掌握設,其中,則當且僅當時,向量、共線;做一件事情,完成它有N類辦法,在第一類辦法中有M1種不同的方法,在第二類辦法中有M2種不同的方法,……,在第N類辦法中有MN種不同的方法,那么完成這件事情共有M1+M2+……+MN種不同的方法.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,平面直角坐標系xOy中,△AOB和△COD為兩等腰直角三角形,A(﹣2,0),C(a,0),(a>0),設△AOB和△COD的
外接圓圓心分別為點M、N.
(Ⅰ)若⊙M與直線CD相切,求直線CD的方程;
(Ⅱ)若直線AB截⊙N所得弦長為4,求⊙N的標準方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知冪函數f(x)的圖象經過點 . (Ⅰ)求函數f(x)的解析式;
(Ⅱ)判斷函數f(x)在區(qū)間(0,+∞)上的單調性,并用單調性的定義證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論在上的單調性;

(2)是否存在實數,使得上的最大值為,若存在,求滿足條件的的個數;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數 的定義域是;值域是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產量是否與年齡有關.現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產件數,然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產件數分成5組:[50,60),[60,70),[70,80),[80,90),[90,100)分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

附表:

P(K2≥k)

0.100

0.010

0.001

k

2.706

6.635

10.828

K2= ,(其中n=a+b+c+d)
(1)從樣本中日平均生產件數不足60件的工人中隨機抽取2人,求至少抽到一名“25周歲以下組”工人的頻率.
(2)規(guī)定日平均生產件數不少于80件者為“生產能手”,請你根據已知條件完成2×2的列聯(lián)表,并判斷是否有90%的把握認為“生產能手與工人所在的年齡組有關”?

生產能手

非生產能手

合計

25周歲以上組

25周歲以下組

合計

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將一個半徑適當的小球放入如圖所示的容器自上方的入口處,小球自由下落,小氣在下落的過程中,將遇到黑色障礙物3次,最后落入A袋或B袋中,已知小球每次遇到障礙物時,向左、右兩邊下落的概率分別是
(1)分別求出小球落入A袋和B袋中的概率;
(2)在容器 入口處依次放入4個小球,記ξ為落入B袋中的小球個數,求ξ的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,點E,F(xiàn)分別在A1B1 , D1C1上,A1E=D1F=4.過E,F(xiàn)的平面α與此長方體的面相交,交線圍成一個正方形

(1)在圖中畫出這個正方形(不必說出畫法和理由)
(2)求平面α把該長方體分成的兩部分體積的比值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數, .

(1)求函數的單調區(qū)間;

(2)對一切, 恒成立,求實數的取值范圍;

(3)證明:對一切,都有成立.

查看答案和解析>>

同步練習冊答案