【題目】如圖,在四棱錐中,,,,,點的中點

(1)求證:平面;

(2)若平面 平面,求直線與平面所成角的正弦值.

【答案】(1)見解析;(2)

【解析】分析:(1)中點,連結(jié)先證明,再證明平面.(2)利用向量的方法求直線與平面所成角的正弦值.

詳解:(1)中點,連結(jié)

因為點的中點,所以,

又因為,所以

所以四邊形為平行四邊形,所以

平面平面,所以平面

2)在平面中,過,在平面中,過

因為平面 平面,平面 平面,所以平面,

所以,所以兩兩互相垂直.

為原點,向量的方向分別為軸、軸的正方向建立空間直角坐標(biāo)系 (如圖),則,,,, 7分

所以,,

設(shè)是平面的一個法向量,

,得

設(shè)直線與平面所成角為

,

所以直線與平面所成角的正弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某漁業(yè)公司年初用81萬元購買一艘捕魚船,第一年各種費用為1萬元,以后每年都增加2萬元,每年捕魚收益30萬元.

問第幾年開始獲利?

若干年后,有兩種處理方案:方案一:年平均獲利最大時,以46萬元出售該漁船;

方案二:總純收入獲利最大時,以10萬元出售該漁船問:哪一種方案合算?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a、b、c,a=btanA,且B為鈍角.
(1)證明:B﹣A= ;
(2)求sinA+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為定義域上的奇函數(shù),且在上是單調(diào)遞增函數(shù),函數(shù),數(shù)列為等差數(shù)列,,且公差不為0,若,則( )

A. 45 B. 15 C. 10 D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=|x+2|﹣|2x﹣1|,M為不等式f(x)>0的解集.
(1)求M;
(2)求證:當(dāng)x,y∈M時,|x+y+xy|<15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠有兩臺不同機器AB生產(chǎn)同一種產(chǎn)品各10萬件,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機抽取20件,進(jìn)行品質(zhì)鑒定,鑒定成績的莖葉圖如圖所示:

該產(chǎn)品的質(zhì)量評價標(biāo)準(zhǔn)規(guī)定:鑒定成績達(dá)到的產(chǎn)品,質(zhì)量等級為優(yōu)秀;鑒定成績達(dá)到的產(chǎn)品,質(zhì)量等級為良好;鑒定成績達(dá)到的產(chǎn)品,質(zhì)量等級為合格將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.

從等級為優(yōu)秀的樣本中隨機抽取兩件,記X為來自B機器生產(chǎn)的產(chǎn)品數(shù)量,寫出X的分布列,并求X的數(shù)學(xué)期望;

完成下列列聯(lián)表,以產(chǎn)品等級是否達(dá)到良好以上含良好為判斷依據(jù),判斷能不能在誤差不超過的情況下,認(rèn)為B機器生產(chǎn)的產(chǎn)品比A機器生產(chǎn)的產(chǎn)品好;

A生產(chǎn)的產(chǎn)品

B生產(chǎn)的產(chǎn)品

合計

良好以上含良好

合格

合計

已知優(yōu)秀等級產(chǎn)品的利潤為12元件,良好等級產(chǎn)品的利潤為10元件,合格等級產(chǎn)品的利潤為5元件,A機器每生產(chǎn)10萬件的成本為20萬元,B機器每生產(chǎn)10萬件的成本為30萬元;該工廠決定:按樣本數(shù)據(jù)測算,兩種機器分別生產(chǎn)10萬件產(chǎn)品,若收益之差達(dá)到5萬元以上,則淘汰收益低的機器,若收益之差不超過5萬元,則仍然保留原來的兩臺機器你認(rèn)為該工廠會仍然保留原來的兩臺機器嗎?

附:獨立性檢驗計算公式:

臨界值表:

k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在四棱錐中,底面是邊長為4的正方形,是正三角形,平面平面,分別是的中點.

(1)求證:平面平面;

(2)若是線段上一點,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點在拋物線上,則當(dāng)點到點的距離與點到拋物線焦點距離之和取得最小值時,點的坐標(biāo)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求滿足下列條件的橢圓或雙曲線的標(biāo)準(zhǔn)方程:

(1)橢圓的焦點在軸上,焦距為4,且經(jīng)過點

(2)雙曲線的焦點在軸上,右焦點為,過作重直于軸的直線交雙曲線于,兩點,且,離心率為.

查看答案和解析>>

同步練習(xí)冊答案