【題目】已知函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)是否存在實(shí)數(shù),使得“對(duì)任意恒成立”?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)答案不唯一,具體見(jiàn)解析(2)存在;實(shí)數(shù)的取值范圍是
【解析】
對(duì)函數(shù)進(jìn)行求導(dǎo),分和兩種情況分別利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性即可;
假設(shè)存在實(shí)數(shù),使得“恒成立”,對(duì)函數(shù)進(jìn)行求導(dǎo),分和兩種情況判斷函數(shù)在上的單調(diào)性并判斷函數(shù)在上的最小值是否為非負(fù).
(1)由題意知,,
則,
當(dāng)時(shí),,所以函數(shù)在上單調(diào)遞增;
當(dāng)時(shí),令,得,
所以當(dāng)時(shí),,函數(shù)在上單調(diào)遞減;
當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;
(2)假設(shè)存在實(shí)數(shù),使得“恒成立”,
因?yàn)楹瘮?shù),所以,
因?yàn)?/span>,
所以當(dāng),即時(shí),在上恒成立,
所以函數(shù)在上單調(diào)遞增,
又,
所以當(dāng)時(shí),對(duì)于任意,有恒成立;
當(dāng),即時(shí),令,得,
解得(其中),
所以,
所以函數(shù)在上單調(diào)遞減,
又,所以當(dāng)不符合題意,
綜上可知,存在實(shí)數(shù)使得“對(duì)任意恒成立”,
符合題意的實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】全世界越來(lái)越關(guān)注環(huán)境保護(hù)問(wèn)題,某監(jiān)測(cè)站點(diǎn)于2018年1月某日起連續(xù)天監(jiān)測(cè)空氣質(zhì)量指數(shù)(),數(shù)據(jù)統(tǒng)計(jì)如下:
空氣質(zhì)量指數(shù)() | |||||
空氣質(zhì)量等級(jí) | 空氣優(yōu) | 空氣良 | 輕度污染 | 中度污染 | 重度污染 |
天數(shù) | 20 | 40 | 10 | 5 |
(1)根據(jù)所給統(tǒng)計(jì)表和頻率分布直方圖中的信息求出,的值,并完成頻率分布直方圖;
(2)由頻率分布直方圖,求該組數(shù)據(jù)的眾數(shù)和中位數(shù);
(3)在空氣質(zhì)量指數(shù)分別屬于和的監(jiān)測(cè)數(shù)據(jù)中,用分層抽樣的方法抽取天,再?gòu)闹腥我膺x取天,求事件“兩天空氣都為良”發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.棱錐的側(cè)棱長(zhǎng)與底面多邊形的邊長(zhǎng)相等,則此棱錐可能是六棱錐
B.四棱錐的四個(gè)側(cè)面都可以是直角三角形
C.有兩個(gè)平面互相平行,其余各面都是梯形的多面體是棱臺(tái)
D.棱臺(tái)的各側(cè)棱延長(zhǎng)后不一定交于一點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解某年齡段人群的午休睡眠質(zhì)量,隨機(jī)抽取了1000名該年齡段的人作為被調(diào)查者,統(tǒng)計(jì)了他們的午休睡眠時(shí)間,得到如圖所示頻率分布直方圖.
(1)求這1000名被調(diào)查者的午休平均睡眠時(shí)間;(同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)作代表)
(2)由直方圖可以認(rèn)為被調(diào)查者的午休睡眠時(shí)間服從正態(tài)分布,其中,分別取被調(diào)查者的平均午休睡眠時(shí)間和方差,那么這1000名被調(diào)查者中午休睡眠時(shí)間低于43.91分鐘(含43.91)的人數(shù)估計(jì)有多少?
(3)如果用這1000名被調(diào)查者的午休睡眠情況來(lái)估計(jì)某市該年齡段所有人的午休睡眠情況,現(xiàn)從全市所有該年齡段人中隨機(jī)抽取2人(午休睡眠時(shí)間不高于43.91分鐘)和3人(午休睡眠時(shí)間不低于73.09分鐘)進(jìn)行訪談后,再?gòu)某槿〉倪@5人中推薦3人作為代表進(jìn)行總結(jié)性發(fā)言,設(shè)推薦出的代表者午休睡眠時(shí)間均不高于43.91分鐘的人數(shù)為,求的分布列和數(shù)學(xué)期望.
附:①,.②,則;;.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),在以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求圓的普通方程和直線的直角坐標(biāo)方程;
(2)設(shè)直線與軸,軸分別交于,兩點(diǎn),點(diǎn)是圓上任一點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣為了幫助農(nóng)戶(hù)脫貧致富,鼓勵(lì)農(nóng)戶(hù)利用荒地山坡種植果樹(shù),某農(nóng)戶(hù)考察了三種不同的果樹(shù)苗、、.經(jīng)過(guò)引種實(shí)驗(yàn)發(fā)現(xiàn),引種樹(shù)苗的自然成活率為,引種樹(shù)苗、的自然成活率均為.
(1)任取樹(shù)苗、、各一棵,估計(jì)自然成活的棵數(shù)為,求的分布列及其數(shù)學(xué)期望;
(2)將(1)中的數(shù)學(xué)期望取得最大值時(shí)的值作為種樹(shù)苗自然成活的概率.該農(nóng)戶(hù)決定引種棵種樹(shù)苗,引種后沒(méi)有自然成活的樹(shù)苗有的樹(shù)苗可經(jīng)過(guò)人工栽培技術(shù)處理,處理后成活的概率為,其余的樹(shù)苗不能成活.
①求一棵種樹(shù)苗最終成活的概率;
②若每棵樹(shù)苗引種最終成活可獲利元,不成活的每棵虧損元,該農(nóng)戶(hù)為了獲利期望不低于萬(wàn)元,問(wèn)至少要引種種樹(shù)苗多少棵?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了整頓道路交通秩序,某地考慮將對(duì)行人闖紅燈進(jìn)行處罰.為了更好地了解市民的態(tài)度,在普通行人中隨機(jī)選取了200人進(jìn)行調(diào)查,當(dāng)不處罰時(shí),有80人會(huì)闖紅燈,處罰時(shí),得到如表數(shù)據(jù):
處罰金額(單位:元) | 5 | 10 | 15 | 20 |
會(huì)闖紅燈的人數(shù) | 50 | 40 | 20 | 10 |
若用表中數(shù)據(jù)所得頻率代替概率.
(1)當(dāng)罰金定為10元時(shí),行人闖紅燈的概率會(huì)比不進(jìn)行處罰降低多少?
(2)將選取的200人中會(huì)闖紅燈的市民分為兩類(lèi):類(lèi)市民在罰金不超過(guò)10元時(shí)就會(huì)改正行為;類(lèi)是其他市民.現(xiàn)對(duì)類(lèi)與類(lèi)市民按分層抽樣的方法抽取4人依次進(jìn)行深度問(wèn)卷,則前兩位均為類(lèi)市民的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線經(jīng)過(guò)點(diǎn),其傾斜角為.以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸,與直角坐標(biāo)系取相同的長(zhǎng)度單位,建立極坐標(biāo)系.設(shè)曲線的極坐標(biāo)方程為.
(1)寫(xiě)出直線的參數(shù)方程,若直線與曲線有公共點(diǎn),求的取值范圍.
(2)設(shè)為曲線上任意一點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com