【題目】設函數(shù).

(1)若函數(shù)是奇函數(shù),求實數(shù)的值;

(2)若對任意的實數(shù),函數(shù)為實常數(shù))的圖象與函數(shù)的圖象總相切于一個定點.

① 求的值;

② 對上的任意實數(shù),都有,求實數(shù)的取值范圍.

【答案】(1)0;(2)①;②

【解析】試題分析:

(1)由奇函數(shù)的 定義得到關于實數(shù)a的方程,解方程可得a=0;

(2)由導函數(shù)研究函數(shù)的 切線可得切點為,切線的方程為,則.

(3)由題意分類討論 兩種情況可得實數(shù)的取值范圍是

試題解析:

解:(1)因為函數(shù)是奇函數(shù),所以恒成立,

,得恒成立,

.

(2)①,設切點為,

則切線的斜率為,

據題意是與無關的常數(shù),故,切點為, 由點斜式得切線的方程為,即,故.

② 當時,對任意的,都有;

時,對任意的,都有;

恒成立,或恒成立.

,設函數(shù).

恒成立,或恒成立,

時, ,,恒成立,所以上遞增, ,

上恒成立,符合題意. 時,令,得,令,得,

上遞減,所以,

設函數(shù),

恒成立,

上遞增, 恒成立,

上遞增, 恒成立,

,而,不合題意.

綜上,知實數(shù)的取值范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設命題實數(shù)滿足),命題實數(shù)滿足.

1)若且“”為真,求實數(shù)的取值范圍;

(2)若的充分不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形, , 垂直于底面, , 分別為 的中點.

(Ⅰ)求證: ;

(Ⅱ)求四棱錐的體積和截面的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本題滿分12分在平面直角坐標系xOy已知兩點,M滿足,設點M的軌跡為C半拋物線),設點

C的軌跡方程

設點T是曲線上一點,曲線在點T處的切線與曲線C相交于點A和點B,ABD的面積的最大值及點T的坐標

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一兒童游樂場擬建造一個“蛋筒”型游樂設施,其軸截面如圖中實線所示. 是等腰梯形, 米, 的延長線上, 為銳角). 圓都相切,且其半徑長為米. 是垂直于的一個立柱,則當的值設計為多少時,立柱最矮?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓Cx2+y2+2x﹣4y+3=0
(1)已知不過原點的直線l與圓C相切,且在x軸,y軸上的截距相等,求直線l的方程;
(2)求經過原點且被圓C截得的線段長為2的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

(1)若,求在區(qū)間[0,3]上的最大值;

(2)若,寫出的單調區(qū)間;

(3)若存在,使得方程有三個不相等的實數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】第96屆(春季)全國糖酒商品交易會于2017年3月23日至25日在四川舉辦.交易會開始前,展館附近一家川菜特色餐廳為了研究參會人數(shù)與餐廳所需原材料數(shù)量的關系,查閱了最近5次交易會的參會人數(shù)(萬人)與餐廳所用原材料數(shù)量(袋),得到如下數(shù)據:

(Ⅰ)請根據所給五組數(shù)據,求出關于的線性回歸方程

(Ⅱ)已知購買原材料的費用(元)與數(shù)量(袋)的關系為投入使用的每袋原材料相應的銷售收入為600元,多余的原材料只能無償返還.若餐廳原材料現(xiàn)恰好用完,據悉本次交易會大約有14萬人參加,根據(Ⅰ)中求出的線性回歸方程,預測餐廳應購買多少袋原材料,才能獲得最大利潤,最大利潤是多少?(注:利潤銷售收入原材料費用).

(參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,O是底面ABCD的中心,E、F分別是CC1、AD的中點.那么異面直線OE和FD1所成角的余弦值為

查看答案和解析>>

同步練習冊答案