【題目】已知函數(shù),且.
(Ⅰ)若,過原點作曲線的切線,求直線的方程;
(Ⅱ)若有個零點,求實數(shù)的取值范圍.
【答案】(1) 或 (2)
【解析】試題分析:(1)根據(jù)題意對函數(shù)求導(dǎo),設(shè)出切點,將過原點的切線方程寫出,從而解出切點坐標(biāo),代入切線方程即可;(2)有3個零點轉(zhuǎn)化為與有三個不同的交點,眼界的單調(diào)性,畫出大致圖像,得到交點個數(shù),進而得到參數(shù)范圍。
解析:
(Ⅰ)由可知.又因,故.
所以.設(shè)切點,切線斜率,則切線方程,由切線過,
則,解得或,
當(dāng),切線,切線方程,
當(dāng),切點,切線,切線方程,
直線的方程或.
(Ⅱ)若有3個零點轉(zhuǎn)化為與
有三個不同的交點, ,
令,解得, . 易知為極大值
點,為極小值點. 則當(dāng), 取極大值0,
當(dāng)時,取極小值. 結(jié)合函數(shù)圖象可知,所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C:ρ2﹣4ρcosθ+1=0,直線l: (t為參數(shù),0≤α<π).
(1)求曲線C的參數(shù)方程;
(2)若直線l與曲線C相切,求直線l的傾斜角及切點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品按質(zhì)量分10個檔次,生產(chǎn)最低檔次的利潤是8元/件;每提高一個檔次,利潤每件增加2元,每提高一個檔次,產(chǎn)量減少3件,在相同時間內(nèi),最低檔次的產(chǎn)品可生產(chǎn)60件.問:在相同時間內(nèi),生產(chǎn)第幾檔次的產(chǎn)品可獲得最大利潤?(最低檔次為第一檔次)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=CD=2,點M是線段EC的中點.
(1)求證:BM∥平面ADEF;
(2)求證:平面BDE⊥平面BEC;
(3)求平面BDM與平面ABF所成的角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1中,E、F分別為棱DD1和BC中點G為棱A1B1上任意一點,則直線AE與直線FG所成的角為( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在鈍角△ABC中,∠A為鈍角,令,若.現(xiàn)給出下面結(jié)論:
①當(dāng)時,點D是△ABC的重心;
②記△ABD,△ACD的面積分別為,,當(dāng)時,;
③若點D在△ABC內(nèi)部(不含邊界),則的取值范圍是;
④若點D在線段BC上(不在端點),則
⑤若,其中點E在直線BC上,則當(dāng)時,.
其中正確的有(寫出所有正確結(jié)論的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=xln(x﹣1)﹣a(x﹣2).
(Ⅰ)若a=2017,求曲線f(x)在x=2處的切線方程;
(Ⅱ)若當(dāng)x≥2時,f(x)≥0,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體ABCDS中,面ABCD為矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD, .
(1)求多面體ABCDS的體積;
(2)求二面角A﹣SB﹣D的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com