【題目】在棱長(zhǎng)均相等的正四棱錐中, 為底面正方形的重心, 分別為側(cè)棱的中點(diǎn),有下列結(jié)論:

平面;②平面平面;③;

④直線與直線所成角的大小為.

其中正確結(jié)論的序號(hào)是__________.(寫出所有正確結(jié)論的序號(hào))

【答案】①②③

【解析】如圖,連接,易得,所以平面,結(jié)論①正確;同理

,所以平面平面,結(jié)論②正確;由于四棱錐的棱長(zhǎng)均相等,所以

,所以,又,所以,結(jié)論③正確.由于分別為側(cè)棱的中點(diǎn),所以,又四邊形為正方形,所以,所以直線與直線所成的角即為直線與直線所成的角,為,知三角形為等邊三角形,所以,故④錯(cuò)誤,故答案為①②③ .

【方法點(diǎn)晴】本題主要考查異面直線所成的角、線面平行的判定、面面平行的判定,屬于難題.求異面直線所成的角主要方法有兩種:一是向量法,根據(jù)幾何體的特殊性質(zhì)建立空間直角坐標(biāo)系后,分別求出兩直線的方向向量,再利用空間向量夾角的余弦公式求解;二是傳統(tǒng)法,利用平行四邊形、三角形中位線等方法找出兩直線成的角,再利用平面幾何性質(zhì)求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍;

(Ⅱ)若函數(shù)的圖象與直線相切,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了響應(yīng)我市“創(chuàng)建宜居港城,建設(shè)美麗莆田”,某環(huán)保部門開展以“關(guān)愛木蘭溪,保護(hù)母親河”為主題的環(huán)保宣傳活動(dòng),將木蘭溪流經(jīng)市區(qū)河段分成段,并組織青年干部職工對(duì)每一段的南、北兩岸進(jìn)行環(huán)保綜合測(cè)評(píng),得到分值數(shù)據(jù)如下表:

南岸

77

92

84

86

74

76

81

71

85

87

北岸

72

87

78

83

83

85

75

89

90

95

(Ⅰ)記評(píng)分在以上(包括)為優(yōu)良,從中任取一段,求在同一段中兩岸環(huán)保評(píng)分均為優(yōu)良的概率;

(Ⅱ)根據(jù)表中數(shù)據(jù)完成下面莖葉圖;

)分別估計(jì)兩岸分值的中位數(shù),并計(jì)算它們的平均值,試從計(jì)算結(jié)果分析兩岸環(huán)保情況,哪邊保護(hù)更好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的多面體中, 平面,

1)在上求作點(diǎn),使平面,請(qǐng)寫出作法并說(shuō)明理由;

2)求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在圓上任取一點(diǎn),過(guò)點(diǎn)軸的垂線段, 為垂足,點(diǎn)在線段上,且,點(diǎn)在圓上運(yùn)動(dòng)。

(1)求點(diǎn)的軌跡方程;

(2)過(guò)定點(diǎn)的直線與點(diǎn)的軌跡交于兩點(diǎn),在軸上是否存在點(diǎn),使為常數(shù),若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)函數(shù),若的極值點(diǎn),求的值并討論的單調(diào)性;

(2)函數(shù)有兩個(gè)不同的極值點(diǎn),其極小值為為,試比較的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示單位:cm,四邊形ABCD是直角梯形,求圖中陰影部分繞AB旋轉(zhuǎn)一周所成幾何體的表面積和體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠商調(diào)查甲、乙兩種不同型號(hào)電視機(jī)在10個(gè)賣場(chǎng)的銷售量(單位:臺(tái)),并根據(jù)這10個(gè)賣場(chǎng)的銷售情況,得到如圖所示的莖葉圖.

為了鼓勵(lì)賣場(chǎng),在同型號(hào)電視機(jī)的銷售中,該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場(chǎng)命名為該型號(hào)電視機(jī)的“星級(jí)賣場(chǎng)”.

(1)當(dāng)時(shí),記甲型號(hào)電視機(jī)的“星級(jí)賣場(chǎng)”數(shù)量為,乙型號(hào)電視機(jī)的“星級(jí)賣場(chǎng)”數(shù)量為,比較的大小關(guān)系;

(2)在這10個(gè)賣場(chǎng)中,隨機(jī)選取2個(gè)賣場(chǎng),記為其中甲型號(hào)電視機(jī)的“星級(jí)賣場(chǎng)”的個(gè)數(shù),求的分布列和數(shù)學(xué)期望;

(3)若,記乙型號(hào)電視機(jī)銷售量的方差為,根據(jù)莖葉圖推斷為何值時(shí),達(dá)到最小值.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCDA1B1C1D1中,EAA1的中點(diǎn),畫出過(guò)D1、CE的平面與平面ABB1A1的交線,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案