若對于給定的正實數(shù)k,函數(shù)的圖象上總存在點C,使得以C為圓心,1為半徑的圓上有兩個不同的點到原點O的距離為2,則k的取值范圍是   
【答案】分析:根據(jù)題意得:以C為圓心,1為半徑的圓與原點為圓心,2為半徑的圓有兩個交點,即C到原點距離小于3,即f(x)的圖象上離原點最近的點到原點的距離小于3,設(shè)出C坐標(biāo),利用兩點間的距離公式表示出C到原點的距離,利用基本不等式求出距離的最小值,讓最小值小于3列出關(guān)于k的不等式,求出不等式的解集即可得到k的范圍.
解答:解:根據(jù)題意得:|OC|<1+2=3,
設(shè)C(x,),
∵|OC|=,
<3,即k<,
則k的范圍為(0,).
故答案為:(0,
點評:此題考查了直線與圓的位置關(guān)系,涉及的知識有:圓與圓位置關(guān)系的判定,基本不等式的運用,以及兩點間的距離公式,解題的關(guān)鍵是根據(jù)題意得出以C為圓心,1為半徑的圓與原點為圓心,2為半徑的圓有兩個交點,即C到原點距離小于3.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•江蘇一模)若對于給定的正實數(shù)k,函數(shù)f(x)=
k
x
的圖象上總存在點C,使得以C為圓心,1為半徑的圓上有兩個不同的點到原點O的距離為2,則k的取值范圍是
(0,
9
2
(0,
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若 數(shù)列{an}前n項和為Sn(n∈N*)
(1)若首項a1=1,且對于任意的正整數(shù)n(n≥2)均有
Sn+k
Sn-k
=
an-k
an+k
,(其中k為正實常數(shù)),試求出數(shù)列{an}的通項公式.
(2)若數(shù)列{an}是等比數(shù)列,公比為q,首項為a1,k為給定的正實數(shù),滿足:
①a1>0,且0<q<1
②對任意的正整數(shù)n,均有Sn-k>0;
試求函數(shù)f(n)=
Sn+k
Sn-k
+k
an-k
an+k
的最大值(用a1和k表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:鎮(zhèn)江一模 題型:填空題

若對于給定的正實數(shù)k,函數(shù)f(x)=
k
x
的圖象上總存在點C,使得以C為圓心,1為半徑的圓上有兩個不同的點到原點O的距離為2,則k的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:鎮(zhèn)江一模 題型:填空題

若對于給定的正實數(shù)k,函數(shù)f(x)=
k
x
的圖象上總存在點C,使得以C為圓心,1為半徑的圓上有兩個不同的點到原點O的距離為2,則k的取值范圍是______.

查看答案和解析>>

同步練習(xí)冊答案