【題目】已知函數(shù),

(1)若,求函數(shù)的零點(diǎn);

(2)若函數(shù)在區(qū)間上恰有一個(gè)零點(diǎn),求的取值范圍.

【答案】(1)1(2)

【解析】

試題分析:(1)利用零點(diǎn)的含義、一元二次方程的解法即可得出;(2)對f(x)進(jìn)行分解,得到,進(jìn)而可得到a的取值范圍

試題解析:(1)若,則, =0,

, 解得,

當(dāng)時(shí),函數(shù)的零點(diǎn)是1.

(2)已知函數(shù)

當(dāng)時(shí),,由,

當(dāng)時(shí),函數(shù)在區(qū)間上恰有一個(gè)零點(diǎn).

當(dāng)時(shí),

,則,由(1)知函數(shù)的零點(diǎn)是,

當(dāng)時(shí),函數(shù)在區(qū)間上恰有一個(gè)零點(diǎn).

,則,

,

解得,即 ,

函數(shù)在區(qū)間上必有一個(gè)零點(diǎn).

要使函數(shù)在區(qū)間上恰有一個(gè)零點(diǎn).

必須 ,或 ,

解得 ,

,

,

綜合①②③得,的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中不一定是平面圖形的是()

A. 三角形 B. 四個(gè)角都相等的四邊形 C. 梯形 D. 平行四邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=x2+2x.

(1)現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,請補(bǔ)出完整函數(shù)f(x)的圖象,并根據(jù)圖象寫出函數(shù)f(x)的增區(qū)間;

(2)寫出函數(shù)f(x)的解析式和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)統(tǒng)計(jì)資料,我國能源生產(chǎn)自1992年以來發(fā)展很快,下面是我國能源生產(chǎn)總量(折合億噸標(biāo)準(zhǔn)煤)的幾個(gè)統(tǒng)計(jì)數(shù)據(jù):1992年8.6億噸,5年后的1997年10.4億噸,10年后的2002年12.9億噸.有關(guān)專家預(yù)測,到2007年我國能源生產(chǎn)總量將達(dá)到17.1億噸,則專家是依據(jù)下列哪一類函數(shù)作為數(shù)學(xué)模型進(jìn)行預(yù)測的(

A.一次函數(shù) B.二次函數(shù) C.指數(shù)函數(shù) D.對數(shù)函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱ABC﹣A1B1C1中,BC=CC1,AB⊥BC點(diǎn)M,N分別是CC1,B1C的中點(diǎn),G是棱AB上的動(dòng)點(diǎn)

1求證:B1C⊥平面BNG;

2若CG∥平面AB1M,試確定G點(diǎn)的位置,并給出證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:函數(shù)fx)=loga(2+x)-loga(2-x)(a>0且a1)

)求fx)定義域;

)判斷fx)的奇偶性,并說明理由;

)求使fx)>0的x的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)當(dāng)時(shí),討論的單調(diào)性;

(2)當(dāng)時(shí),求在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】教室內(nèi)有一直尺,無論怎樣放置,在地面總有這樣的直線,使得它與直尺所在直線 ( )

A. 平行 B. 垂直 C. 相交 D. 異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將圓每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>倍,得到曲線.

1)寫出的參數(shù)方程;

2)設(shè)直線的交點(diǎn)為,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,求:過線段的中點(diǎn)且與垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊答案