【題目】團(tuán)購(gòu)已成為時(shí)下商家和顧客均非常青睞的一種省錢(qián)、高校的消費(fèi)方式,不少商家同時(shí)加入多家團(tuán)購(gòu)網(wǎng).現(xiàn)恰有三個(gè)團(tuán)購(gòu)網(wǎng)站在市開(kāi)展了團(tuán)購(gòu)業(yè)務(wù), 市某調(diào)查公司為調(diào)查這三家團(tuán)購(gòu)網(wǎng)站在本市的開(kāi)展情況,從本市已加入了團(tuán)購(gòu)網(wǎng)站的商家中隨機(jī)地抽取了50家進(jìn)行調(diào)查,他們加入這三家團(tuán)購(gòu)網(wǎng)站的情況如下圖所示.

(1)從所調(diào)查的50家商家中任選兩家,求他們加入團(tuán)購(gòu)網(wǎng)站的數(shù)量不相等的概率;

(2)從所調(diào)查的50家商家中任取兩家,用表示這兩家商家參加的團(tuán)購(gòu)網(wǎng)站數(shù)量之差的絕對(duì)值,求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(3)將頻率視為概率,現(xiàn)從市隨機(jī)抽取3家已加入團(tuán)購(gòu)網(wǎng)站的商家,記其中恰好加入了兩個(gè)團(tuán)購(gòu)網(wǎng)站的商家數(shù)為,試求事件“”的概率.

【答案】(1);(2)從而的分布列為

0

1

2

;(3).

【解析】試題分析】(1)運(yùn)用概率的計(jì)算公式求概率分布,再運(yùn)用數(shù)學(xué)期望公式進(jìn)行求解;(2)借助題設(shè)條件運(yùn)用貝努力公式進(jìn)行分析求解:

(1)記所選取額兩家商家加入團(tuán)購(gòu)網(wǎng)站的數(shù)量相等為事件,則

,所以他們加入團(tuán)購(gòu)網(wǎng)站的數(shù)量不相等的概率為.

(2)由題,知的可能取值分別為0,1,2

,

,

,

從而的分布列為

0

1

2

.

(3)所調(diào)查的50家商家中加入了兩個(gè)團(tuán)購(gòu)網(wǎng)站的商家有25家,將頻率視為概率,則從市中任取一家加入團(tuán)購(gòu)網(wǎng)站的商家,他同時(shí)加入了兩個(gè)團(tuán)購(gòu)網(wǎng)站的概率為,所以,所以事件“”的概率為

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,當(dāng)k為何值時(shí),
(1) 垂直?
(2) 平行?平行時(shí)它們是同向還是反向?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若存在實(shí)數(shù),使得函數(shù)對(duì)定義域內(nèi)的任意均滿(mǎn)足,且存在使得,存在使得,則稱(chēng)直線為函數(shù)分界線.在下列說(shuō)法中正確的是__________(寫(xiě)出所有正確命題的編號(hào)).

①任意兩個(gè)一次函數(shù)最多存在一條分界線”;

分界線存在的兩個(gè)函數(shù)的圖象最多只有兩個(gè)交點(diǎn);

分界線;

分界線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)場(chǎng)計(jì)劃種植某種新作物,為此對(duì)這種作物的兩個(gè)品種分別稱(chēng)為品種甲和品種乙進(jìn)行田間試驗(yàn)選取兩大塊地,每大塊地分成小塊地,在總共小塊地中,隨機(jī)選小塊地種植品種甲,另外小塊地種植品種乙

1假設(shè),求第一大塊地都種植品種甲的概率;

2試驗(yàn)時(shí)每大塊地分成小塊,即,試驗(yàn)結(jié)束后得到品種甲和品種乙在各小塊地上的每公頃產(chǎn)量單位:kg/hm2如下表:

分別求品種甲和品種乙的每公頃產(chǎn)量的樣本平均數(shù)和樣本方差;根據(jù)試驗(yàn)結(jié)果,你認(rèn)為應(yīng)該種植哪一品種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱柱中,側(cè)面為矩形, , , 的中點(diǎn), 交于點(diǎn),且平面.

(Ⅰ)證明:平面平面;

(Ⅱ)若 的重心為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中, 平面, , , 為線段上一點(diǎn), , 的中點(diǎn).

(1)證明: 平面

(2)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng), 取一切非負(fù)實(shí)數(shù)時(shí),若,求的范圍;

(2)若函數(shù)存在極大值,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在測(cè)試中,客觀題難度的計(jì)算公式為,其中為第題的難度, 為答對(duì)該題的人數(shù), 為參加測(cè)試的總?cè)藬?shù).現(xiàn)對(duì)某校高三年級(jí)240名學(xué)生進(jìn)行一次測(cè)試,共5道客觀題,測(cè)試前根據(jù)對(duì)學(xué)生的了解,預(yù)估了每道題的難度,如表所示:

題號(hào)

1

2

3

4

5

考前預(yù)估難度

0.9

0.8

0.7

0.6

0.4

測(cè)試后,從中隨機(jī)抽取了20名學(xué)生的答題數(shù)據(jù)進(jìn)行統(tǒng)計(jì),結(jié)果如表:

(Ⅰ)根據(jù)題中數(shù)據(jù),估計(jì)中240名學(xué)生中第5題的實(shí)測(cè)答對(duì)人數(shù);

(Ⅱ)從抽樣的20名學(xué)生中隨機(jī)抽取2名學(xué)生,記這2名學(xué)生中第5題答對(duì)的人數(shù)為,求的分布列和數(shù)學(xué)期望;

(Ⅲ)試題的預(yù)估難度和實(shí)測(cè)難度之間會(huì)有偏差.設(shè)為第題的實(shí)測(cè)難度,請(qǐng)用設(shè)計(jì)一個(gè)統(tǒng)計(jì)量,并制定一個(gè)標(biāo)準(zhǔn)來(lái)判斷本次測(cè)試對(duì)難度的預(yù)估是否合理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 是邊長(zhǎng)為的正方形, 平面, 平面, .

(Ⅰ)求證: ;

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案