【題目】已知橢圓的離心率為,左、右焦點(diǎn)分別為、為橢圓上異于長(zhǎng)軸端點(diǎn)的點(diǎn),且的最大面積為.

1)求橢圓的標(biāo)準(zhǔn)方程

2)若直線是過(guò)點(diǎn)點(diǎn)的直線,且與橢圓交于不同的點(diǎn)、,是否存在直線使得點(diǎn)、到直線,的距離、,滿足恒成立,若存在,求的值,若不存在,說(shuō)明理由.

【答案】1;(2)存在,且.

【解析】

1)根據(jù)題意列出有關(guān)、、的方程組,求出這三個(gè)量的值,即可得出橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)直線的方程為,設(shè)點(diǎn)、,將直線的方程與橢圓方程聯(lián)立,并列出韋達(dá)定理,由,得出,通過(guò)化簡(jiǎn)計(jì)算并代入韋達(dá)定理計(jì)算出的值,即可得出直線的方程,即可說(shuō)明直線的存在性.

1)設(shè)橢圓的焦距為,且的最大面積為,則,

由已知條件得,解得,因此,橢圓的標(biāo)準(zhǔn)方程為;

2)當(dāng)直線不與軸重合時(shí),設(shè)直線的方程為,設(shè)點(diǎn),

將直線的方程與橢圓方程聯(lián)立,消去并整理得

,

由韋達(dá)定理得.

,即,即,

整理得;

當(dāng)直線軸重合時(shí),則直線與橢圓的交點(diǎn)為左、右頂點(diǎn),設(shè)點(diǎn),

,,由,得,解得.

綜上所述,存在直線,使得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】火箭少女101的新曲《卡路里》受到了廣大聽(tīng)眾的追捧,歌詞積極向上的體現(xiàn)了人們對(duì)于健康以及完美身材的渴望.據(jù)有關(guān)數(shù)據(jù)顯示,成年男子的體脂率在14%-25%之間.幾年前小王重度肥胖,在專業(yè)健身訓(xùn)練后,身材不僅恢復(fù)正常,且走上美體路線.通過(guò)整理得到如下數(shù)據(jù)及散點(diǎn)圖.

健身年數(shù)

1

2

3

4

5

6

體脂率(有分比)

32

20

12

8

6.4

4.4

3.4

3

2.5

2.1

1.9

1.5

1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)模型更適宜作為體脂率關(guān)于健身年數(shù)的回歸方程模型(給出選擇即可)

2)根據(jù)(1)的判斷結(jié)果與題目中所給數(shù)據(jù),建立的回歸方程.(保留一位小數(shù))

3)再堅(jiān)持3年,體脂率可達(dá)到多少.

參考公式:

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為,觀影人數(shù)記為,其函數(shù)圖象如圖(1)所示.由于目前該片盈利未達(dá)到預(yù)期,相關(guān)人員提出了兩種調(diào)整方案,圖(2)、圖(3)中的實(shí)線分別為調(diào)整后的函數(shù)圖象.

給出下列四種說(shuō)法:

①圖(2)對(duì)應(yīng)的方案是:提高票價(jià),并提高成本;

②圖(2)對(duì)應(yīng)的方案是:保持票價(jià)不變,并降低成本;

③圖(3)對(duì)應(yīng)的方案是:提高票價(jià),并保持成本不變;

④圖(3)對(duì)應(yīng)的方案是:提高票價(jià),并降低成本.

其中,正確的說(shuō)法是____________.(填寫所有正確說(shuō)法的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若恒成立,求實(shí)數(shù)的取值范圍;

2)若函數(shù)有兩個(gè)不同的零點(diǎn),,且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某品牌電腦體驗(yàn)店預(yù)計(jì)全年購(gòu)入臺(tái)電腦,已知該品牌電腦的進(jìn)價(jià)為/臺(tái),為節(jié)約資金決定分批購(gòu)入,若每批都購(gòu)入為正整數(shù))臺(tái),且每批需付運(yùn)費(fèi)元,儲(chǔ)存購(gòu)入的電腦全年所付保管費(fèi)與每批購(gòu)入電腦的總價(jià)值(不含運(yùn)費(fèi))成正比(比例系數(shù)為),若每批購(gòu)入臺(tái),則全年需付運(yùn)費(fèi)和保管費(fèi).

1)記全年所付運(yùn)費(fèi)和保管費(fèi)之和為元,求關(guān)于的函數(shù).

2)若要使全年用于支付運(yùn)費(fèi)和保管費(fèi)的資金最少,則每批應(yīng)購(gòu)入電腦多少臺(tái)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為為參數(shù)),直線與曲線分別交于兩點(diǎn).

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若點(diǎn)的極坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著智能手機(jī)的普及,使用手機(jī)上網(wǎng)成為了人們?nèi)粘I畹囊徊糠,很多消費(fèi)者對(duì)手機(jī)流量的需求越來(lái)越大.某通信公司為了更好地滿足消費(fèi)者對(duì)流量的需求,準(zhǔn)備推出一款流量包.該通信公司選了人口規(guī)模相當(dāng)?shù)?/span>個(gè)城市采用不同的定價(jià)方案作為試點(diǎn),經(jīng)過(guò)一個(gè)月的統(tǒng)計(jì),發(fā)現(xiàn)該流量包的定價(jià): (單位:元/月)和購(gòu)買總?cè)藬?shù)(單位:萬(wàn)人)的關(guān)系如表:

定價(jià)x(元/月)

20

30

50

60

年輕人(40歲以下)

10

15

7

8

中老年人(40歲以及40歲以上)

20

15

3

2

購(gòu)買總?cè)藬?shù)y(萬(wàn)人)

30

30

10

10

(Ⅰ)根據(jù)表中的數(shù)據(jù),請(qǐng)用線性回歸模型擬合的關(guān)系,求出關(guān)于的回歸方程;并估計(jì)元/月的流量包將有多少人購(gòu)買?

(Ⅱ)若把元/月以下(不包括元)的流量包稱為低價(jià)流量包,元以上(包括元)的流量包稱為高價(jià)流量包,試運(yùn)用獨(dú)立性檢驗(yàn)知識(shí),填寫下面列聯(lián),并通過(guò)計(jì)算說(shuō)明是否能在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為購(gòu)買人的年齡大小與流量包價(jià)格高低有關(guān)?

定價(jià)x(元/月)

小于50元

大于或等于50元

總計(jì)

年輕人(40歲以下)

中老年人(40歲以及40歲以上)

總計(jì)

參考公式:其中

其中

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)是拋物線內(nèi)一點(diǎn),是拋物線的焦點(diǎn),是拋物線上任意一點(diǎn),且已知的最小值為2.

1)求拋物線的方程;

2)拋物線上一點(diǎn)處的切線與斜率為常數(shù)的動(dòng)直線相交于,且直線與拋物線相交于、兩點(diǎn).問(wèn)是否有常數(shù)使?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著網(wǎng)購(gòu)人數(shù)的日益增多,網(wǎng)上的支付方式也呈現(xiàn)一種多樣化的狀態(tài),越來(lái)越多的便捷移動(dòng)支付方式受到了人們的青睞,更被網(wǎng)友們?cè)u(píng)為“新四大發(fā)明”之一.隨著人們消費(fèi)觀念的進(jìn)步,許多人喜歡用信用卡購(gòu)物,考慮到這一點(diǎn),一種“網(wǎng)上的信用卡”橫空出世——螞蟻花唄.這是一款支付寶和螞蟻金融合作開(kāi)發(fā)的新支付方式,簡(jiǎn)單便捷,同時(shí)也滿足了部分網(wǎng)上消費(fèi)群體在支付寶余額不足時(shí)的“賒購(gòu)”消費(fèi)需求.為了調(diào)查使用螞蟻花唄“賒購(gòu)”消費(fèi)與消費(fèi)者年齡段的關(guān)系,某網(wǎng)站對(duì)其注冊(cè)用戶開(kāi)展抽樣調(diào)查,在每個(gè)年齡段的注冊(cè)用戶中各隨機(jī)抽取100人,得到各年齡段使用螞蟻花唄“賒購(gòu)”的人數(shù)百分比如圖所示.

1)由大數(shù)據(jù)可知,在1844歲之間使用花唄“賒購(gòu)”的人數(shù)百分比y與年齡x成線性相關(guān)關(guān)系,利用統(tǒng)計(jì)圖表中的數(shù)據(jù),以各年齡段的區(qū)間中點(diǎn)代表該年齡段的年齡,求所調(diào)查群體各年齡段“賒購(gòu)”人數(shù)百分比y與年齡x的線性回歸方程(回歸直線方程的斜率和截距保留兩位有效數(shù)字);

2)該網(wǎng)站年齡為20歲的注冊(cè)用戶共有2000人,試估算該網(wǎng)站20歲的注冊(cè)用戶中使用花唄“賒購(gòu)”的人數(shù);

3)已知該網(wǎng)店中年齡段在18-26歲和27-35歲的注冊(cè)用戶人數(shù)相同,現(xiàn)從1835歲之間使用花唄“賒購(gòu)”的人群中按分層抽樣的方法隨機(jī)抽取8人,再?gòu)倪@8人中簡(jiǎn)單隨機(jī)抽取2人調(diào)查他們每個(gè)月使用花唄消費(fèi)的額度,求抽取的兩人年齡都在1826歲的概率.

參考答案:,.

查看答案和解析>>

同步練習(xí)冊(cè)答案