【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間和極值;

(2)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的范圍;

(3)已知函數(shù)與函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,如果,且,證明: .

【答案】(1)見(jiàn)解析;(2);(3)見(jiàn)解析.

【解析】試題分析: 求導(dǎo)即可求函數(shù)的單調(diào)區(qū)間和極值,求導(dǎo)后分類討論當(dāng)時(shí)、當(dāng)時(shí)、當(dāng)時(shí)、當(dāng)時(shí)的情況,給出結(jié)果,求導(dǎo)證明可得,得證

解析:(1)根據(jù),

,解得,當(dāng)變化時(shí), 的變化情況如下表:

遞減

遞增

∴函數(shù)的增區(qū)間為,減區(qū)間為;函數(shù)處取的極小值,無(wú)極大值.

(2)由,則,

當(dāng)時(shí), ,易知函數(shù)只有一個(gè)零點(diǎn),不符合題意,

當(dāng)時(shí),在 單調(diào)遞減;在 單調(diào)遞增,又, ,當(dāng)時(shí), ,所以函數(shù)有兩個(gè)零點(diǎn),

當(dāng)時(shí),在 單調(diào)遞增,在, 單調(diào)遞減.又 ,所以函數(shù)至多一個(gè)零點(diǎn),不符合題意,

當(dāng)時(shí),在, 單調(diào)遞增,在 單調(diào)遞減.

,所以函數(shù)至多一個(gè)零點(diǎn),不符合題意,

當(dāng)時(shí), ,函數(shù)在上單調(diào)遞增,所以函數(shù)至多一個(gè)零點(diǎn),不符合題意,

綜上,實(shí)數(shù)的取值范圍是.

(3)由, ,令,解得,當(dāng)變化時(shí), , 的變化情況如下表:

遞增

遞減

,不妨設(shè),根據(jù)結(jié)合圖象可知,

, ,則,∵ ,∴,則,∴單調(diào)遞增,又∵,∴時(shí), ,即當(dāng)時(shí), ,則

,∴,因,∴,∴,∵上是增函數(shù),∴,∴得證.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐中,交于點(diǎn),且,

(1)若中點(diǎn),求證:。

(2)當(dāng)三棱錐的體積最大時(shí),求三棱錐的體積,并證明:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù)xy滿足,則的最大值為________,的最小值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的長(zhǎng)軸長(zhǎng)為,且經(jīng)過(guò)點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)橢圓右焦點(diǎn)作兩條互相垂直的弦,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)國(guó)家環(huán)保部最新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)PM2.5的年平均濃度不得超過(guò)35微克/立方米,PM2.524小時(shí)平均濃度不得超過(guò)75微克/立方米。某城市環(huán)保部分隨機(jī)抽取的一居民區(qū)過(guò)去20PM2.524小時(shí)平均濃度的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如下:

組別

PM2.5平均濃度

頻數(shù)

頻率

第一組

(0,25]

3

0.15

第二組

(25,50]

12

0.6

第三組

(50,75]

3

0.15

第四組

(75,100]

2

0.1

(Ⅰ)從樣本中PM2.5的24小時(shí)平均濃度超過(guò)50微克/立方米的5天中,隨機(jī)抽取2天,求恰好有一天PM2.5的24小時(shí)平均濃度超過(guò)75微克/立方米的概率;

(II)求樣本平均數(shù),并根據(jù)樣本估計(jì)總計(jì)的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進(jìn)?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電視臺(tái)在互聯(lián)網(wǎng)上征集電視節(jié)目的現(xiàn)場(chǎng)參與觀眾,報(bào)名的共有12000人,分別來(lái)自4個(gè)地區(qū),其中甲地區(qū)2400人,乙地區(qū)4605人,丙地區(qū)3795人,丁地區(qū)1200人,主辦方計(jì)劃從中抽取60人參加現(xiàn)場(chǎng)節(jié)目,請(qǐng)?jiān)O(shè)計(jì)一套抽樣方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,過(guò)拋物線上一點(diǎn)作拋物線的切線軸于點(diǎn).

(1)判斷的形狀;

(2) 兩點(diǎn)在拋物線上,點(diǎn)滿足,若拋物線上存在異于的點(diǎn),使得經(jīng)過(guò)三點(diǎn)的圓與拋物線在點(diǎn)處的有相同的切線,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,以的中線為折痕,將沿折起,如圖所示,構(gòu)成二面角,在面內(nèi)作,且

(1)求證:平面

(2)如果二面角的大小為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】返鄉(xiāng)創(chuàng)業(yè)的大學(xué)生一直是人們比較關(guān)注的對(duì)象,他們從大學(xué)畢業(yè),沒(méi)有選擇經(jīng)濟(jì)發(fā)達(dá)的大城市,而是回到自己的家鄉(xiāng),為養(yǎng)育自己的家鄉(xiāng)貢獻(xiàn)自己的力量,在享有“國(guó)際花園城市”稱號(hào)的溫江幸福田園,就有一個(gè)由大學(xué)畢業(yè)生創(chuàng)辦的農(nóng)家院“小時(shí)代”,其獨(dú)特的裝修風(fēng)格和經(jīng)營(yíng)模式,引來(lái)無(wú)數(shù)人的關(guān)注,帶來(lái)紅紅火火的現(xiàn)狀,給青年大學(xué)生們就業(yè)創(chuàng)業(yè)上很多新的啟示.在接受采訪中,該老板談起以下情況:初期投入為72萬(wàn)元,經(jīng)營(yíng)后每年的總收入為50萬(wàn)元,第n年需要付出房屋維護(hù)和工人工資等費(fèi)用是首項(xiàng)為12,公差為4的等差數(shù)列(單位:萬(wàn)元).

1)求;

2)該農(nóng)家樂(lè)第幾年開(kāi)始盈利?能盈利幾年?(即總收入減去成本及所有費(fèi)用之差為正值)

3)該農(nóng)家樂(lè)經(jīng)營(yíng)多少年,其年平均獲利最大?年平均獲利的最大值是多少?(年平均獲利年總獲利

查看答案和解析>>

同步練習(xí)冊(cè)答案