【題目】已知棱長(zhǎng)為1的正方體,點(diǎn)是四邊形內(nèi)(含邊界)任意一點(diǎn), 是中點(diǎn),有下列四個(gè)結(jié)論:
①;②當(dāng)點(diǎn)為中點(diǎn)時(shí),二面角的余弦值;③與所成角的正切值為;④當(dāng)時(shí),點(diǎn)的軌跡長(zhǎng)為.
其中所有正確的結(jié)論序號(hào)是( )
A.①②③B.①③④C.②③④D.①②④
【答案】B
【解析】
①利用線面平行,得到線線平行。②要求二面角的余弦值,轉(zhuǎn)化為求二面角的平面角余弦值。③要求線線角,將其平移至一個(gè)三角形中,即可求解。④證明平面,則即為點(diǎn)的運(yùn)動(dòng)路徑,通過(guò)計(jì)算即可求解。
解:如圖所示,
①根據(jù)正方體的幾何性質(zhì),易得平面,又因?yàn)?/span>平面, 故,即,故①對(duì)。
②當(dāng)點(diǎn)為中點(diǎn)時(shí),,且,所以二面角的平面角為,連接,又,故所求二面角的余弦值為 .故②錯(cuò)。
③因?yàn)?/span>,所以與所成角即為與所成角,即為,連接,在等腰三角形中,為底邊中點(diǎn),所以 ,所以與所成角的正切值為.故③對(duì)。
④點(diǎn)為 中點(diǎn),所以,又因?yàn)?/span> 所以平面, 即點(diǎn)在線段上運(yùn)動(dòng)時(shí),,所以點(diǎn)的軌跡長(zhǎng)為,故④對(duì)。
故選.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,N為CD的中點(diǎn),M是AC上一點(diǎn).
(1)若M為AC的中點(diǎn),求證:AD//平面BMN;
(2)若,平面平面BCD,,求直線AC與平面BMN所成的角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在點(diǎn)處的切線方程為.
(1)求、;
(2)設(shè)曲線與軸負(fù)半軸的交點(diǎn)為點(diǎn),曲線在點(diǎn)處的切線方程為,求證:對(duì)于任意的實(shí)數(shù),都有;
(3)若關(guān)于的方程有兩個(gè)實(shí)數(shù)根,,且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年是新中國(guó)成立七十周年,新中國(guó)成立以來(lái),我國(guó)文化事業(yè)得到了充分發(fā)展,尤其是黨的十八大以來(lái),文化事業(yè)發(fā)展更加迅速,下圖是從2013 年到 2018 年六年間我國(guó)公共圖書(shū)館業(yè)機(jī)構(gòu)數(shù)(個(gè))與對(duì)應(yīng)年份編號(hào)的散點(diǎn)圖(為便于計(jì)算,將 2013 年編號(hào)為 1,2014 年編號(hào)為 2,…,2018年編號(hào)為 6,把每年的公共圖書(shū)館業(yè)機(jī)構(gòu)個(gè)數(shù)作為因變量,把年份編號(hào)從 1 到 6 作為自變量進(jìn)行回歸分析),得到回歸直線,其相關(guān)指數(shù),給出下列結(jié)論,其中正確的個(gè)數(shù)是( )
①公共圖書(shū)館業(yè)機(jī)構(gòu)數(shù)與年份的正相關(guān)性較強(qiáng)
②公共圖書(shū)館業(yè)機(jī)構(gòu)數(shù)平均每年增加13.743個(gè)
③可預(yù)測(cè) 2019 年公共圖書(shū)館業(yè)機(jī)構(gòu)數(shù)約為3192個(gè)
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A,B是拋物線上關(guān)于軸對(duì)稱的兩點(diǎn),點(diǎn)E是拋物線C的準(zhǔn)線與x軸的交點(diǎn).
(1)若是面積為4的直角三角形,求拋物線C的方程;
(2)若直線BE與拋物線C交于另一點(diǎn)D,證明:直線AD過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下列抽樣調(diào)查,較為合理的抽樣方法依次是( )
①?gòu)?/span>件產(chǎn)品中抽取件進(jìn)行檢查;
②某校高中三個(gè)年級(jí)共有人,其中高一人、高二人、高三人,為了了解學(xué)生對(duì)數(shù)學(xué)的建議,擬抽取一個(gè)容量為的樣本;
③某劇場(chǎng)有排,每排有個(gè)座位,在一次報(bào)告中恰好坐滿了聽(tīng)眾,報(bào)告結(jié)束后,為了了解聽(tīng)眾意見(jiàn),需要請(qǐng)名聽(tīng)眾進(jìn)行座談.
A.簡(jiǎn)單隨機(jī)抽樣,系統(tǒng)抽樣,分層抽樣;B.分層抽樣,系統(tǒng)抽樣,簡(jiǎn)單隨機(jī)抽樣;
C.系統(tǒng)抽樣,簡(jiǎn)單隨機(jī)抽樣,分層抽樣;D.簡(jiǎn)單隨機(jī)抽樣,分層抽樣,系統(tǒng)抽樣;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),.
(Ⅰ)若,證明函數(shù)有唯一的極小值點(diǎn);
(Ⅱ)設(shè)且,記函數(shù)的最大值為M,求使得的a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的幾何體中,正方形與梯形所在的平面互相垂直,, ,,.
(1)求證:平面;
(2)求證:平面平面;
(3)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com