【題目】如圖,在三棱錐P—ABC中,PA⊥平面ABC,AC⊥BC,D為PC中點(diǎn),E為AD中點(diǎn),PA=AC=2,BC=1.
(1)求證:AD⊥平面PBC:
(2)求PE與平面ABD所成角的正弦值.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
(1)先通過(guò)線(xiàn)面垂直的判定定理,得出平面PAC,所以,由等腰三角形的性質(zhì)可得,,可得最后結(jié)果.
(2)以C為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,求A,B,P,D,E點(diǎn)的坐標(biāo),求平面ABD的法向量為,利用線(xiàn)面角的公式即可得出結(jié)果.
(1)證明:∵平面ABC,∴
又因?yàn)?/span>,
∴平面PAC,∴.
∵,D為PC中點(diǎn),
∴,又∵,
∴平面PBC;
(2)以C為坐標(biāo)原點(diǎn)建立如圖空間直角坐標(biāo)系
,,,∴,,
∴,,.
設(shè)平面ABD的法向量為,
則,令,則,得.
設(shè)PE與平面ABD所成角為,則
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線(xiàn)與曲線(xiàn),(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)寫(xiě)出曲線(xiàn),的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,已知與,的公共點(diǎn)分別為,,,當(dāng)時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)直線(xiàn)與軸的交點(diǎn)為,經(jīng)過(guò)點(diǎn)的直線(xiàn)與曲線(xiàn)交于兩點(diǎn),若,求直線(xiàn)的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),mR.
(1)若m=﹣1,求函數(shù)在區(qū)間[,e]上的最小值;
(2)若m>0,求函數(shù)的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓 的左焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為.
(1)已知橢圓的離心率為,線(xiàn)段中點(diǎn)的橫坐標(biāo)為,求橢圓的標(biāo)準(zhǔn)方程;
(2)已知△外接圓的圓心在直線(xiàn)上,求橢圓的離心率的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于定義在區(qū)間上的函數(shù),若任給,均有,則稱(chēng)函數(shù)在區(qū)間上是封閉.
(1)試判斷在區(qū)間上是否封閉,并說(shuō)明理由;
(2)若函數(shù)在區(qū)間上封閉,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】癌癥是迄今為止人類(lèi)尚未攻克的疾病之一,目前,癌癥只能盡量預(yù)防.某醫(yī)學(xué)中心推出了一種抗癌癥的制劑,現(xiàn)對(duì)20位癌癥病人,進(jìn)行醫(yī)學(xué)試驗(yàn)測(cè)試藥效,測(cè)試結(jié)果分為“病人死亡”和“病人存活”,現(xiàn)對(duì)測(cè)試結(jié)果和藥物劑量(單位:)進(jìn)行統(tǒng)計(jì),規(guī)定病人在服用(包括)以上為“足量”,否則為“不足量”,統(tǒng)計(jì)結(jié)果顯示,這20病人
中“病人存活”的有13位,對(duì)病人服用的藥物劑量統(tǒng)計(jì)如下表:
編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
吸收量/ | 6 | 8 | 3 | 8 | 9 | 5 | 6 | 6 | 2 | 7 | 7 | 5 | 10 | 6 | 7 | 8 | 8 | 4 | 6 | 9 |
已知“病人存活”,但服用的藥物劑量不足的病人共1位.
(1)完成下列列聯(lián)表,并判斷是否可以在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為“病人存活”與服用藥物的劑量足量有關(guān)?
服用藥物足量 | 服用藥物不足量 | 合計(jì) | |
病人存活 | 1 | ||
病人死亡 | |||
合計(jì) | 20 |
(2)若在該樣本“服用藥物劑量不足”的病人中隨機(jī)抽取3位,求這三人中恰有1位“病人存活”的概率.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),.
(1)求函數(shù)的極值;
(2)對(duì)任意,都有,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.
(1)寫(xiě)出曲線(xiàn)的普通方程和直線(xiàn)的直角坐標(biāo)方程;
(2)若直線(xiàn)與曲線(xiàn)相交于、兩點(diǎn),求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com