【題目】已知為等差數(shù)列,為等比數(shù)列,公比為..

1)若.

①當(dāng),求數(shù)列的通項(xiàng)公式;

②設(shè),試比較的大?并證明你的結(jié)論.

2)問(wèn)集合中最多有多少個(gè)元素?并證明你的結(jié)論.

【答案】1)①;②,證明見(jiàn)解析;(23個(gè),證明見(jiàn)解析.

【解析】

1)①利用數(shù)列基本量,結(jié)合已知條件,即可容易求得結(jié)果;

②用作差法,結(jié)合代數(shù)運(yùn)算,即可證明和判斷;

(2)將問(wèn)題轉(zhuǎn)化為有多少個(gè)解的問(wèn)題,構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,從而問(wèn)題得解.

1)由,得.

設(shè)數(shù)列公差為,數(shù)列公比為,由,故.

①因?yàn)?/span>,,,所以數(shù)列的公比,所以,.

②答:.證明如下:

因?yàn)?/span>,,所以

.

所以.

2)不妨設(shè),由.

,,原問(wèn)題轉(zhuǎn)化為關(guān)于的方程

,①

最多有多少個(gè)解.

下面我們證明:當(dāng)時(shí),方程①最多有2個(gè)解;時(shí),方程②最多有3個(gè)解.

當(dāng)時(shí),考慮函數(shù),則,

如果,則為單調(diào)函數(shù),故方程①最多只有一個(gè)解;

如果,且不妨設(shè)由有唯一零點(diǎn)

于是當(dāng)時(shí),恒大于0或恒小于0

當(dāng)時(shí),恒小于0或恒大于0

這樣在區(qū)間上是單調(diào)函數(shù),

故方程①最多有2個(gè)解.

當(dāng)時(shí),如果.

如果為奇數(shù),則方程①變?yōu)?/span>

顯然方程最多只有一個(gè)解,即最多只有一個(gè)奇數(shù)滿(mǎn)足方程①.

如果為偶數(shù),則方程①變?yōu)?/span>

,由的情形,上式最多有2個(gè)解,

即滿(mǎn)足①的偶數(shù)最多有2個(gè).

這樣,最多有3個(gè)正數(shù)滿(mǎn)足方程①.

對(duì)于,同理可以證明,方程①最多有3個(gè)解.

綜上所述,集合中的元素個(gè)數(shù)最多有3個(gè).

再由當(dāng),則,.

由此,可知集合中的元素個(gè)數(shù)最多有3個(gè).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本小題滿(mǎn)分12分設(shè)各項(xiàng)均為正數(shù)的等比數(shù)列,

1求數(shù)列的通項(xiàng)公式;

2,求證: ;

3是否存在正整數(shù),使得對(duì)任意正整數(shù)均成立?若存在求出的最大值,若不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,已知曲線(xiàn)的參數(shù)方程為為參數(shù),),曲線(xiàn)的極坐標(biāo)方程為:.且兩曲線(xiàn)交于兩點(diǎn).

1)求曲線(xiàn)的直角坐標(biāo)方程;

2)設(shè),若成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在橢圓上任取一點(diǎn)不為長(zhǎng)軸端點(diǎn)),連結(jié)、,并延長(zhǎng)與橢圓分別交于點(diǎn)、兩點(diǎn),已知的周長(zhǎng)為8,面積的最大值為.

1)求橢圓的方程;

2)設(shè)坐標(biāo)原點(diǎn)為,當(dāng)不是橢圓的頂點(diǎn)時(shí),直線(xiàn)和直線(xiàn)的斜率之積是否為定值?若是定值,請(qǐng)求出這個(gè)定值;若不是定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形中,沿對(duì)角線(xiàn)折起,使之間的距離為分別為線(xiàn)段上的動(dòng)點(diǎn)

1)求線(xiàn)段長(zhǎng)度的最小值;

2)當(dāng)線(xiàn)段長(zhǎng)度最小時(shí),求直線(xiàn)與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年春,新型冠狀病毒在我國(guó)湖北武漢爆發(fā)并訊速蔓延,病毒傳染性強(qiáng)并嚴(yán)重危害人民生命安全,國(guó)家衛(wèi)健委果斷要求全體人民自我居家隔離,為支援湖北武漢新型冠狀病毒疫情防控工作,各地醫(yī)護(hù)人員紛紛逆行,才使得病毒蔓延得到了有效控制.某社區(qū)為保障居民的生活不受影響,由社區(qū)志愿者為其配送蔬菜、大米等生活用品,記者隨機(jī)抽查了男、女居民各100名對(duì)志愿者所買(mǎi)生活用品滿(mǎn)意度的評(píng)價(jià),得到下面的2×2列聯(lián)表.

特別滿(mǎn)意

基本滿(mǎn)意

80

20

95

5

1)被調(diào)查的男性居民中有5個(gè)年輕人,其中有2名對(duì)志愿者所買(mǎi)生活用品特別滿(mǎn)意,現(xiàn)在這5名年輕人中隨機(jī)抽取3人,求至多有1人特別滿(mǎn)意的概率.

2)能否有99%的把握認(rèn)為男、女居民對(duì)志愿者所買(mǎi)生活用品的評(píng)價(jià)有差異?

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線(xiàn)的極坐標(biāo)方程為

1)若直線(xiàn)與曲線(xiàn)至多只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍;

2)若直線(xiàn)與曲線(xiàn)相交于兩點(diǎn),且,的中點(diǎn)為,求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是2015年至2019年國(guó)內(nèi)游客人次y(單位:億)的散點(diǎn)圖.

為了預(yù)測(cè)2025年國(guó)內(nèi)游客人次,根據(jù)2015年至2019年的數(shù)據(jù)建立了與時(shí)間變量(時(shí)間變量的值依次為1,2,..,5)的3個(gè)回歸模型:①;②;③.其中相關(guān)指數(shù).

1)你認(rèn)為用哪個(gè)模型得到的預(yù)測(cè)值更可靠?并說(shuō)明理由.

2)根據(jù)(1)中你選擇的模型預(yù)測(cè)2025年國(guó)內(nèi)游客人次,結(jié)合已有數(shù)據(jù)說(shuō)明數(shù)據(jù)反映出的社會(huì)現(xiàn)象并給國(guó)家相關(guān)部門(mén)提出應(yīng)對(duì)此社會(huì)現(xiàn)象的合理化建議.

查看答案和解析>>

同步練習(xí)冊(cè)答案