【題目】隨著改革開放的不斷深入,祖國不斷富強(qiáng),人民的生活水平逐步提高,為了進(jìn)一步改善民生,2019年1月1日起我國實(shí)施了個(gè)人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個(gè)稅起征點(diǎn)為5000元;(2)每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)專項(xiàng)附加扣除;(3)專項(xiàng)附加扣除包括①贍養(yǎng)老人費(fèi)用②子女教育費(fèi)用③繼續(xù)教育費(fèi)用④大病醫(yī)療費(fèi)用……等.其中前兩項(xiàng)的扣除標(biāo)準(zhǔn)為:①贍養(yǎng)老人費(fèi)用:每月扣除2000元②子女教育費(fèi)用:每個(gè)子女每月扣除1000元.
新個(gè)稅政策的稅率表部分內(nèi)容如下:
級(jí)數(shù) | 一級(jí) | 二級(jí) | 三級(jí) | 四級(jí) | … |
每月應(yīng)納稅所得額(含稅) | 不超過3000元的部分 | 超過3000元至12000元的部分 | 超過12000元至25000元的部分 | 超過25000元至35000元的部分 | … |
稅率(%) | 3 | 10 | 20 | 25 | … |
(1)現(xiàn)有李某月收入19600元,膝下有一名子女,需要贍養(yǎng)老人,(除此之外,無其它專項(xiàng)附加扣除)請問李某月應(yīng)繳納的個(gè)稅金額為多少?
(2)現(xiàn)收集了某城市50名年齡在40歲到50歲之間的公司白領(lǐng)的相關(guān)資料,通過整理資料可知,有一個(gè)孩子的有40人,沒有孩子的有10人,有一個(gè)孩子的人中有30人需要贍養(yǎng)老人,沒有孩子的人中有5人需要贍養(yǎng)老人,并且他們均不符合其它專項(xiàng)扣除(受統(tǒng)計(jì)的50人中,任何兩人均不在一個(gè)家庭).若他們的月收入均為20000元,試求在新個(gè)稅政策下這50名公司白領(lǐng)的月平均繳納個(gè)稅金額為多少?
【答案】(1)元;(2)元
【解析】
(1)分段計(jì)算個(gè)人所得稅額;
(2)求出4種人群所要繳納的個(gè)稅額,利用加權(quán)平均數(shù)公式計(jì)算平均數(shù).
解:(1)李某月應(yīng)納稅所得額(含稅)為:元,
不超過3000的部分稅額為元,
超過3000元至12000元的部分稅額為元,
所以李某月應(yīng)繳納的個(gè)稅金額為元.
(2)有孩子需要贍養(yǎng)老人應(yīng)納稅所得額(含稅)為:元,
月應(yīng)繳納的個(gè)稅金額為:元,
有一個(gè)孩子不需要贍養(yǎng)老人應(yīng)納稅所得額(含稅)為:元,
月應(yīng)繳納的個(gè)稅金額為:元,
沒有孩子需要贍養(yǎng)老人應(yīng)納稅所得額(含稅)為:元,
月應(yīng)繳納的個(gè)稅金額為:元,
沒有孩子不需要贍養(yǎng)老人應(yīng)納稅所得額(含稅)為:元
月應(yīng)繳納的個(gè)稅金額為:元;
元,
所以在新個(gè)稅政策下這50名公司白領(lǐng)月平均繳納個(gè)稅金額為元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),則下述結(jié)論中錯(cuò)誤的是( )
A.若在有且僅有個(gè)零點(diǎn),則在有且僅有個(gè)極小值點(diǎn)
B.若在有且僅有個(gè)零點(diǎn),則在上單調(diào)遞增
C.若在有且僅有個(gè)零點(diǎn),則的范圍是
D.若圖像關(guān)于對稱,且在單調(diào),則的最大值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 = (1,2sinθ),= (sin(θ+),1),θR。
(1) 若⊥,求 tanθ的值;
(2) 若∥,且 θ (0,),求 θ的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一商場對每天進(jìn)店人數(shù)和商品銷售件數(shù)進(jìn)行了統(tǒng)計(jì)對比,得到如下表格:
(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖,并由散點(diǎn)圖判斷銷售件數(shù)與進(jìn)店人數(shù)是否線性相關(guān)?(給出判斷即可,不必說明理由)
(2)建立關(guān)于的回歸方程(系數(shù)精確到0.01),預(yù)測進(jìn)店人數(shù)為80時(shí),商品銷售的件數(shù)(結(jié)果保留整數(shù)).
參考數(shù)據(jù):,,,,,.
參考公式:回歸方程,其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“紅燈停,綠燈行”,這是我們每個(gè)人都應(yīng)該也必須遵守的交通規(guī)則.湊齊一撥人就過馬路﹣﹣不看交通信號(hào)燈、隨意穿行交叉路口的“中國式過馬路”不僅不文明而且存在很大的交通安全隱患.一座城市是否存在“中國式過馬路”是衡量這座城市文明程度的重要指標(biāo).某調(diào)查機(jī)構(gòu)為了了解路人對“中國式過馬路”的態(tài)度,從馬路旁隨機(jī)抽取30名路人進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:
男性 | 女性 | 合計(jì) | |
反感 | 10 | ||
不反感 | 8 | ||
合計(jì) | 30 |
已知在這30人中隨機(jī)抽取1人抽到反感“中國式過馬路”的路人的概率是.
(1)請將上面的列聯(lián)表補(bǔ)充完整(在答題卷上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此列聯(lián)表數(shù)據(jù)判斷是否有95%的把握認(rèn)為反感“中國式過馬路”與性別有關(guān)?
(2)若從這30人中的女性路人中隨機(jī)抽取2人參加一項(xiàng)活動(dòng),記反感“中國式過馬路”的人數(shù)為X,求X的分布列及其數(shù)學(xué)期望.
附:,其中n=a+b+c+d
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)經(jīng)典《九章算術(shù)》系統(tǒng)地總結(jié)了戰(zhàn)國、秦、漢時(shí)期的數(shù)學(xué)成就,書中將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個(gè)面都為直角三角形的三棱錐稱之為鱉臑,如圖為一個(gè)陽馬與一個(gè)鱉臑的組合體,已知平面,四邊形為正方形,,,若鱉臑的外接球的體積為,則陽馬的外接球的表面積等于______。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題:
函數(shù)的最大值為1;
“,”的否定是“”;
若為銳角三角形,則有;
“”是“函數(shù)在區(qū)間內(nèi)單調(diào)遞增”的充分必要條件.
其中錯(cuò)誤的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)已知直線:,:.若直線與關(guān)于對稱,又函數(shù)在處的切線與垂直,求實(shí)數(shù)的值;
(2)若函數(shù),則當(dāng),時(shí),求證:
①;
②.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在以O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C1的極坐標(biāo)方程為ρ=4cosθ,直線C2的參數(shù)方程為(t為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程和直線C2的普通方程;
(2)若P(1,0),直線C2與曲線C1相交于A,B兩點(diǎn),求|PA||PB|的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com