(本題13分)
已知函數(shù)
(1)若對(duì)一切實(shí)數(shù)
恒成立,求實(shí)數(shù)
的取值范圍.
(2)求在區(qū)間
上的最小值
的表達(dá)式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù).
(1)判斷函數(shù)在定義域上的單調(diào)性;
(2)利用題(1)的結(jié)論,,求使不等式在
上恒成立時(shí)的實(shí)數(shù)
的取值范圍?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分15分)
為了保護(hù)環(huán)境,發(fā)展低碳經(jīng)濟(jì),某單位在國(guó)家科研部門的支持下,采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本(元)與月處理量
(噸)之間的函數(shù)關(guān)系可近似的表示為:
,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價(jià)值為100元.
(1)該單位每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?
(2)該單位每月能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則國(guó)家至少需要補(bǔ)貼多少元才能使該單位不虧損?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)的圖象過點(diǎn)(1,13),圖像關(guān)于直線
對(duì)稱。
(1)求的解析式。
(2)已知,
,
① 若函數(shù)的零點(diǎn)有三個(gè),求實(shí)數(shù)
的取值范圍;
②求函數(shù)在[
,2]上的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分16分)
有甲、乙兩種商品,經(jīng)銷這兩種商品所獲的利潤(rùn)依次為(萬元)和
(萬元),它們與投入的資金
(萬元)的關(guān)系,據(jù)經(jīng)驗(yàn)估計(jì)為:
,
今有3萬元資金投入經(jīng)銷甲、乙兩種商品,為了獲得最大利潤(rùn),應(yīng)對(duì)甲、乙兩種商品分別投入多少資金?總共獲得的最大利潤(rùn)是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知某公司生產(chǎn)某品牌服裝的年固定成本為10萬元,每生產(chǎn)一千件,需要另投入2.7萬元.設(shè)該公司年內(nèi)共生產(chǎn)該品牌服裝千件并全部銷售完,每千件的銷售收入為
萬元,且
.
(I)寫出年利潤(rùn)(萬元)關(guān)于年產(chǎn)量
(千件)的函數(shù)關(guān)系式;
(Ⅱ)年生產(chǎn)量為多少千件時(shí),該公司在這一品牌服裝的生產(chǎn)中所獲年利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分分)
若函數(shù)在定義域
內(nèi)某區(qū)間
上是增函數(shù),而
在
上是減函數(shù),
則稱在
上是“弱增函數(shù)”
(1)請(qǐng)分別判斷=
,
在
是否是“弱增函數(shù)”,
并簡(jiǎn)要說明理由;
(2)證明函數(shù)(
是常數(shù)且
)在
上是“弱增函數(shù)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)
如圖,在半徑為的
圓形(
為圓心)鋁皮上截取一塊矩形材料
,其中點(diǎn)
在圓上,點(diǎn)
、
在兩半徑上,現(xiàn)將此矩形鋁皮
卷成一個(gè)以
為母線的圓柱形罐子的側(cè)面(不計(jì)剪裁和拼接損耗),設(shè)矩形的邊長(zhǎng)
,圓柱的體積為
.
(1)寫出體積關(guān)于
的函數(shù)關(guān)系式,并指出定義域;
(2)當(dāng)為何值時(shí),才能使做出的圓柱形罐子體積
最大?最大體積是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com