【題目】函數(shù)對任意都有,則稱為在區(qū)間上的可控函數(shù),區(qū)間稱為函數(shù)可控區(qū)間,寫出函數(shù)的一個可控區(qū)間是________.

【答案】的子集都可以

【解析】

,由可控函數(shù)的定義可得,上恒成立,運(yùn)算即可得解.

:因為,所以,

由可控函數(shù)的定義可得上恒成立,

上恒成立,

則區(qū)間可為,

即函數(shù)的一個可控區(qū)間是,

故答案為: .

【點晴】

本題以函數(shù)的形式為背景,考查的是不等式的有關(guān)知識及推理判斷的能力.結(jié)論的開放性和不確定性是本題的一大特色.解答時應(yīng)充分依據(jù)題設(shè)條件,合理有效地利用好可控函數(shù)及可控區(qū)間等新信息和新定義,并以此為基礎(chǔ)進(jìn)行推理論證,從而寫出滿足題設(shè)條件的答案.解答本題時,借助絕對值不等式的性質(zhì)進(jìn)行巧妙推證,從而探尋出符合題設(shè)條件的一可控區(qū)間的區(qū)間.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),則下列關(guān)于函數(shù)的說法,不正確的是(

A.的圖象關(guān)于對稱

B.上有2個零點

C.在區(qū)間上單調(diào)遞減

D.函數(shù)圖象向右平移個單位,所得圖像對應(yīng)的函數(shù)為奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線與曲線交于兩點.

1)求實數(shù)的取值范圍;

2)若,點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將方格紙中每個小方格染三種顏色之一,使得每種顏色的小方格的個數(shù)相等.若相鄰兩個小方格的顏色不同,稱他們的公共邊為“分割邊”,則分割邊條數(shù)的最小值為( )

A.33B.56C.64D.78

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】市場上有一種新型的強(qiáng)力洗衣粉,特點是去污速度快,已知每投放)個單位的洗衣粉液在一定量水的洗衣機(jī)中,它在水中釋放的濃度(克/升)隨著時間(分鐘)變化的函數(shù)關(guān)系式近似為,其中,若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時刻所釋放的濃度之和,根據(jù)經(jīng)驗,當(dāng)水中洗衣液的濃度不低于4(克/升)時,它才能起有效去污的作用.

1)若只投放一次4個單位的洗衣液,則有效去污時間可能達(dá)幾分鐘?

2)若先投放2個單位的洗衣液,6分鐘后投放個單位的洗衣液,要使接下來的4分鐘中能夠持續(xù)有效去污,試求的最小值(精確到0.1,參考數(shù)據(jù): .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域是一切實數(shù)的函數(shù),其圖象是連續(xù)不斷的,且存在常數(shù))使得對任意實數(shù)都成立,則稱是一個-伴隨函數(shù),有下列關(guān)于-伴隨函數(shù)的結(jié)論:①是常數(shù)函數(shù)唯一一個-伴隨函數(shù);②-伴隨函數(shù)至少有一個零點;③是一個-伴隨函數(shù);其中正確結(jié)論的個數(shù)(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)過多年的努力,炎陵黃桃在國內(nèi)乃至國際上逐漸打開了銷路,成為炎陵部分農(nóng)民脫貧致富的好產(chǎn)品.為了更好地銷售,現(xiàn)從某村的黃桃樹上隨機(jī)摘下了100個黃桃進(jìn)行測重,其質(zhì)量分布在區(qū)間內(nèi)(單位:克),統(tǒng)計質(zhì)量的數(shù)據(jù)作出其頻率分布直方圖如圖所示:

(1)按分層抽樣的方法從質(zhì)量落在的黃桃中隨機(jī)抽取5個,再從這5個黃桃中隨機(jī)抽2個,求這2個黃桃質(zhì)量至少有一個不小于400克的概率;

(2)以各組數(shù)據(jù)的中間數(shù)值代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該村的黃桃樹上大約還有100000個黃桃待出售,某電商提出兩種收購方案:

A.所有黃桃均以20/千克收購;

B.低于350克的黃桃以5/個收購,高于或等于350克的以9/個收購.

請你通過計算為該村選擇收益最好的方案.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù).

1)若,求處的切線方程;

2)若可上單調(diào)遞增,求的取值范圍;

3)求證:當(dāng)在區(qū)間內(nèi)存在唯一極大值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱臺中,,G,H分別為上的點,平面平面,,.

1)證明:平面平面

2)若,,求二面角的大小.

查看答案和解析>>

同步練習(xí)冊答案