已知函數(shù),,若對于任一實數(shù),的值至少有一個為正數(shù),則實數(shù)的取值范圍是

A.              B.       C.          D.

C解析一:觀察四個答案,可用排除法.

m=0時,g(x)=0,f(x)=2x2+4x+4,其判別式Δ<0,

故f(x)恒為正數(shù),m=0合題意,排除D.

m=4時,g(x)=4x,f(x)=2x2,在x=0時,二者均為零,不合題,故排除A.

m=-4時,g(x)=-4x,f(x)=2x2+8x+8=2(x+2)2,

二者圖象如圖所示,合題意,故排除B.

綜述選C.

解析二:二次函數(shù)f(x)在y軸上截距為x=4-m,直線y=mx過原點,

∴4-m>0,m<0,即m<4符合題意

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log2x
(Ⅰ)若f(x)的反函數(shù)是函數(shù)y=g(x),解方程g(2x)=2g(x)+10;
(Ⅱ)對于任意a、b、c∈[M,+∞),M>1且a≥b≥c.當a,b,c能作為一個三角形的三邊長時,f(a)、f(b)、f(c)也總能作為某個三角形的三邊長,試分別探究下面兩個問題:
(1)當1<M<2時,是否存在a、b、c∈[M,+∞),且a≥b≥c,當a、b、c能作為一個三角形的三邊長時,以f(a)、f(b)、f(c)不能作為三角形的三邊長.
(2)M≥2,證明:對于任a、b、c∈[M,+∞),且a≥b≥c,當a、b、c能作為一個三角形的三邊長時,f(a)、f(b)、f(c)總能作為三角形的三邊長.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年高考試題(上海秋季)解析版(理) 題型:解答題

 [番茄花園1] 本題共有3個小題,第1小題滿分3分,第2小題滿分5分,第3小題滿分10分。

若實數(shù)、滿足,則稱遠離.

(1)若比1遠離0,求的取值范圍;

(2)對任意兩個不相等的正數(shù)、,證明:遠離;

(3)已知函數(shù)的定義域.任取,等于中遠離0的那個值.寫出函數(shù)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).

23本題共有3個小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.

已知橢圓的方程為,點P的坐標為(-a,b).

(1)若直角坐標平面上的點M、A(0,-b),B(a,0)滿足,求點的坐標;

(2)設直線交橢圓、兩點,交直線于點.若,證明:的中點;

(3)對于橢圓上的點Q(a cosθ,b sinθ)(0<θ<π),如果橢圓上存在不同的兩個交點、滿足,寫出求作點、的步驟,并求出使、存在的θ的取值范圍.

 

 

 

 


 [番茄花園1]22.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=log2x
(Ⅰ)若f(x)的反函數(shù)是函數(shù)y=g(x),解方程g(2x)=2g(x)+10;
(Ⅱ)對于任意a、b、c∈[M,+∞),M>1且a≥b≥c.當a,b,c能作為一個三角形的三邊長時,f(a)、f(b)、f(c)也總能作為某個三角形的三邊長,試分別探究下面兩個問題:
(1)當1<M<2時,是否存在a、b、c∈[M,+∞),且a≥b≥c,當a、b、c能作為一個三角形的三邊長時,以f(a)、f(b)、f(c)不能作為三角形的三邊長.
(2)M≥2,證明:對于任a、b、c∈[M,+∞),且a≥b≥c,當a、b、c能作為一個三角形的三邊長時,f(a)、f(b)、f(c)總能作為三角形的三邊長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=log2x
(Ⅰ)若f(x)的反函數(shù)是函數(shù)y=g(x),解方程g(2x)=2g(x)+10;
(Ⅱ)對于任意a、b、c∈[M,+∞),M>1且a≥b≥c.當a,b,c能作為一個三角形的三邊長時,f(a)、f(b)、f(c)也總能作為某個三角形的三邊長,試分別探究下面兩個問題:
(1)當1<M<2時,是否存在a、b、c∈[M,+∞),且a≥b≥c,當a、b、c能作為一個三角形的三邊長時,以f(a)、f(b)、f(c)不能作為三角形的三邊長.
(2)M≥2,證明:對于任a、b、c∈[M,+∞),且a≥b≥c,當a、b、c能作為一個三角形的三邊長時,f(a)、f(b)、f(c)總能作為三角形的三邊長.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年福建省廈門外國語中學高一(上)期中數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)f(x)=log2x
(Ⅰ)若f(x)的反函數(shù)是函數(shù)y=g(x),解方程g(2x)=2g(x)+10;
(Ⅱ)對于任意a、b、c∈[M,+∞),M>1且a≥b≥c.當a,b,c能作為一個三角形的三邊長時,f(a)、f(b)、f(c)也總能作為某個三角形的三邊長,試分別探究下面兩個問題:
(1)當1<M<2時,是否存在a、b、c∈[M,+∞),且a≥b≥c,當a、b、c能作為一個三角形的三邊長時,以f(a)、f(b)、f(c)不能作為三角形的三邊長.
(2)M≥2,證明:對于任a、b、c∈[M,+∞),且a≥b≥c,當a、b、c能作為一個三角形的三邊長時,f(a)、f(b)、f(c)總能作為三角形的三邊長.

查看答案和解析>>

同步練習冊答案