科目: 來源: 題型:
【題目】如圖,上海迪士尼樂園將一三角形地塊的一角開辟為游客體驗活動區(qū),已知,、的長度均大于米,設(shè),,且、總長度為米.
(1)當(dāng)、為何值時,游客體驗活動區(qū)的面積最大,并求最大面積?
(2)當(dāng)、為何值時,線段最小,并求最小值?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1) 證明:PB∥平面AEC
(2) 設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為,其中為參數(shù),在以坐標(biāo)原點O為極點,x軸的正半軸為極軸的極坐標(biāo)系中,點P的極坐標(biāo)為,直線l的極坐標(biāo)方程為.
(1)求曲線C的普通方程與直線l的直角坐標(biāo)方程;
(2)若Q是曲線C上的動點,M為線段PQ的中點,求點M到直線l的距離的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】作為交通重要參與者的行人,闖紅燈通行頻有發(fā)生,帶來了較大的交通安全隱患.在某十字路口,交警部門從穿越該路口的行人中隨機抽取了200人進(jìn)行調(diào)查,得到不完整的列聯(lián)表如圖所示:
年齡低于30歲 | 年齡不低于30歲 | 合計 | |
闖紅燈 | 60 | 80 | |
未闖紅燈 | 80 | ||
合計 | 200 |
(1)將列聯(lián)表補充完整;
(2)是否有99.9%的把握認(rèn)為行人是否闖紅燈與年齡有關(guān).
參考公式及數(shù)據(jù):,其中.
P() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線:,過其焦點作斜率為1的直線交拋物線于,兩點,且線段的中點的縱坐標(biāo)為4.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若不過原點且斜率存在的直線與拋物線相交于、兩點,且.求證:直線過定點,并求出該定點的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)是定義在R上的兩個周期函數(shù),的周期為4,的周期為2,且是奇函數(shù).當(dāng)時,,,其中k>0.若在區(qū)間(0,9]上,關(guān)于x的方程有8個不同的實數(shù)根,則k的取值范圍是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知為定義在實數(shù)集上的函數(shù),把方程稱為函數(shù)的特征方程,特征方程的兩個實根、(),稱為的特征根.
(1)討論函數(shù)的奇偶性,并說明理由;
(2)已知為給定實數(shù),求的表達(dá)式;
(3)把函數(shù),的最大值記作,最小值記作,研究函數(shù),的單調(diào)性,令,若恒成立,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓,橢圓的短半軸長等于圓的半徑,且過右焦點的直線與圓相切于點.
(1)求橢圓的方程;
(2)若動直線與圓相切,且與相交于兩點,求點到弦的垂直平分線距離的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)().
(1)求證:函數(shù)是增函數(shù);
(2)若函數(shù)在上的值域是(),求實數(shù)的取值范圍;
(3)若存在,使不等式成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】有甲、乙二人去看望高中數(shù)學(xué)張老師,期間他們做了一個游戲,張老師的生日是月日,張老師把告訴了甲,把告訴了乙,然后張老師列出來如下10個日期供選擇: 2月5日,2月7日,2月9日,3月2日,3月7日,5月5日,5月8日,7月2日,7月6日,7月9日.看完日期后,甲說“我不知道,但你一定也不知道”,乙聽了甲的話后,說“本來我不知道,但現(xiàn)在我知道了”,甲接著說,“哦,現(xiàn)在我也知道了”.請問張老師的生日是_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com