科目: 來源: 題型:
【題目】已知函數(shù)f(x)=lg(x+1).
(1)若0<f(1-2x)-f(x)<1,求實(shí)數(shù)x的取值范圍;
(2)若g(x)是以2為周期的偶函數(shù),且當(dāng)0≤x≤1時,有g(x)=f(x),當(dāng)x∈[1,2]時,求函數(shù)y=g(x)的解析式.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)有關(guān)于的一元二次方程.
(Ⅰ)若是從四個數(shù)中任取的一個數(shù),是從三個數(shù)中任取的一個數(shù),求上述方程有實(shí)根的概率.
(Ⅱ)若是從區(qū)間任取的一個數(shù),是從區(qū)間任取的一個數(shù),求上述方程有實(shí)根的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】若無窮數(shù)列滿足:只要,必有,則稱具有性質(zhì).
(1)若具有性質(zhì),且, ,求;
(2)若無窮數(shù)列是等差數(shù)列,無窮數(shù)列是公比為正數(shù)的等比數(shù)列, , , 判斷是否具有性質(zhì),并說明理由;
(3)設(shè)是無窮數(shù)列,已知.求證:“對任意都具有性質(zhì)”的充要條件為“是常數(shù)列”.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,已知圓圓心為,過點(diǎn)且斜率為的直線與圓相交于不同的兩點(diǎn)、.
()求的取值范圍;
()是否存在常數(shù),使得向量與共線?如果存在,求值;如果不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn),直線.
(1)求以點(diǎn)A為圓心,以為半徑的圓與直線相交所得弦長;
(2)設(shè)圓的半徑為1,圓心在上.若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正三棱柱中,.
(1)求直線與平面所成角的正弦值;
(2)在線段上是否存在點(diǎn)?使得二面角的大小為60°,若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),對稱軸為軸,焦點(diǎn)為,拋物線上一點(diǎn)的橫坐標(biāo)為2,且.
(1)求拋物線的方程;
(2)過點(diǎn)作直線交拋物線于,兩點(diǎn),求證:.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)),為的導(dǎo)函數(shù),且.
(1)求實(shí)數(shù)的值;
(2)若函數(shù)在處的切線經(jīng)過點(diǎn),求函數(shù)的極值;
(3)若關(guān)于的不等式對于任意的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的右焦點(diǎn)為,左、右頂點(diǎn)分別為、,上、下頂點(diǎn)分別為、,連結(jié)并延長交橢圓于點(diǎn),連結(jié),,記橢圓的離心率為.
(1)若,.
①求橢圓的標(biāo)準(zhǔn)方程;
②求和的面積之比.
(2)若直線和直線的斜率之積為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com