相關(guān)習(xí)題
 0  264606  264614  264620  264624  264630  264632  264636  264642  264644  264650  264656  264660  264662  264666  264672  264674  264680  264684  264686  264690  264692  264696  264698  264700  264701  264702  264704  264705  264706  264708  264710  264714  264716  264720  264722  264726  264732  264734  264740  264744  264746  264750  264756  264762  264764  264770  264774  264776  264782  264786  264792  264800  266669 

科目: 來源: 題型:

【題目】已知函數(shù).

1)若對(duì)任意的,都有恒成立,求的最小值;

2)設(shè),若為曲線上的兩個(gè)不同的點(diǎn),滿足,且,使得曲線在點(diǎn)處的切線與直線平行,求證:.

查看答案和解析>>

科目: 來源: 題型:

【題目】新能源汽車的春天來了!201835日上午,李克強(qiáng)總理做政府工作報(bào)告時(shí)表示,將新能源汽車車輛購(gòu)置稅優(yōu)惠政策再延長(zhǎng)三年,自201811日至20201231日,對(duì)購(gòu)置的新能源汽車免征車輛購(gòu)置稅.某人計(jì)劃于20185月購(gòu)買一輛某品牌新能源汽車,他從當(dāng)?shù)卦撈放其N售網(wǎng)站了解了近五個(gè)月的實(shí)際銷量如下表:

月份

2017.12

2018.01

2018.02

2018.03

2018.04

月份編號(hào)

1

2

3

4

5

銷量(萬量)

0.5

0.6

1

1.4

1.7

1)經(jīng)分析,可用線性回歸模型擬合當(dāng)?shù)卦撈放菩履茉雌噷?shí)際銷量(萬輛)與月份編號(hào)之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)20185月份當(dāng)?shù)卦撈放菩履茉雌嚨匿N量;

22018612日,中央財(cái)政和地方財(cái)政將根據(jù)新能源汽車的最大續(xù)航里程(新能源汽車的最大續(xù)航里程是指理論上新能源汽車所裝的燃料或電池所能夠提供給車跑的最遠(yuǎn)里程)對(duì)購(gòu)車補(bǔ)貼進(jìn)行新一輪調(diào)整.已知某地?cái)M購(gòu)買新能源汽車的消費(fèi)群體十分龐大,某調(diào)研機(jī)構(gòu)對(duì)其中的200名消費(fèi)者的購(gòu)車補(bǔ)貼金額的心理預(yù)期值進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:

補(bǔ)貼金額預(yù)期值區(qū)間(萬元)

頻數(shù)

20

60

60

30

20

10

i)求這200位擬購(gòu)買新能源汽車的消費(fèi)者對(duì)補(bǔ)貼金額的心理預(yù)期值的方差及中位數(shù)的估計(jì)值(同一區(qū)間的預(yù)期值可用該區(qū)間的中點(diǎn)值代替,估計(jì)值精確到0.1);

ii)將頻率視為概率,現(xiàn)用隨機(jī)抽樣方法從該地區(qū)擬購(gòu)買新能源汽車的所有消費(fèi)者中隨機(jī)抽取3人,記被抽取的3人中對(duì)補(bǔ)貼金額的心理預(yù)期值不低于3萬元的人數(shù)為,求的分布列及數(shù)學(xué)期望.

附:①回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:;②.

查看答案和解析>>

科目: 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是菱形,四邊形是矩形,平面平面,,,的中點(diǎn),為線段上的一點(diǎn).

1)求證:;

2)若二面角的大小為,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在正方體ABCDA1B1C1D1中,E,F分別為棱AA1,CC1的中點(diǎn),則在空間中與三條直線A1D1EF,CD都相交的直線(

A.不存在B.有且只有兩條C.有且只有三條D.有無數(shù)條

查看答案和解析>>

科目: 來源: 題型:

【題目】已知兩點(diǎn)分別在軸和軸上運(yùn)動(dòng),且,若動(dòng)點(diǎn)滿足.

1)求出動(dòng)點(diǎn)的軌跡的標(biāo)準(zhǔn)方程;

2)設(shè)動(dòng)直線與曲線有且僅有一個(gè)公共點(diǎn),與圓相交于兩點(diǎn)(兩點(diǎn)均不在坐標(biāo)軸上),求直線的斜率之積.

查看答案和解析>>

科目: 來源: 題型:

【題目】2019年上半年我國(guó)多個(gè)省市暴發(fā)了非洲豬瘟疫情,生豬大量病死,存欄量急劇下降,一時(shí)間豬肉價(jià)格暴漲,其他肉類價(jià)格也跟著大幅上揚(yáng),嚴(yán)重影響了居民的生活.為了解決這個(gè)問題,我國(guó)政府一方面鼓勵(lì)有條件的企業(yè)和散戶防控疫情,擴(kuò)大生產(chǎn);另一方面積極向多個(gè)國(guó)家開放豬肉進(jìn)口,擴(kuò)大肉源,確保市場(chǎng)供給穩(wěn)定.某大型生豬生產(chǎn)企業(yè)分析當(dāng)前市場(chǎng)形勢(shì),決定響應(yīng)政府號(hào)召,擴(kuò)大生產(chǎn)決策層調(diào)閱了該企業(yè)過去生產(chǎn)相關(guān)數(shù)據(jù),就一天中一頭豬的平均成本與生豬存欄數(shù)量之間的關(guān)系進(jìn)行研究.現(xiàn)相關(guān)數(shù)據(jù)統(tǒng)計(jì)如下表:

生豬存欄數(shù)量(千頭)

2

3

4

5

8

頭豬每天平均成本(元)

3.2

2.4

2

1.9

1.5

1)研究員甲根據(jù)以上數(shù)據(jù)認(rèn)為具有線性回歸關(guān)系,請(qǐng)幫他求出關(guān)于的線.性回歸方程(保留小數(shù)點(diǎn)后兩位有效數(shù)字)

2)研究員乙根據(jù)以上數(shù)據(jù)得出的回歸模型:.為了評(píng)價(jià)兩種模型的擬合效果,請(qǐng)完成以下任務(wù):

①完成下表(計(jì)算結(jié)果精確到0.01元)(備注:稱為相應(yīng)于點(diǎn)的殘差);

生豬存欄數(shù)量(千頭)

2

3

4

5

8

頭豬每天平均成本(元)

3.2

2.4

2

1.9

1.5

模型甲

估計(jì)值

殘差

模型乙

估計(jì)值

3.2

2.4

2

1.76

1.4

殘差

0

0

0

0.14

0.1

②分別計(jì)算模型甲與模型乙的殘差平方和,并通過比較的大小,判斷哪個(gè)模型擬合效果更好.

3)根據(jù)市場(chǎng)調(diào)查,生豬存欄數(shù)量達(dá)到1萬頭時(shí),飼養(yǎng)一頭豬每一天的平均收入為7.5元;生豬存欄數(shù)量達(dá)到1.2萬頭時(shí),飼養(yǎng)一頭豬每一天的平均收入為7.2元若按(2)中擬合效果較好的模型計(jì)算一天中一頭豬的平均成本,問該生豬存欄數(shù)量選擇1萬頭還是1.2萬頭能獲得更多利潤(rùn)?請(qǐng)說明理由.(利潤(rùn)=收入-成本)

參考公式:.

參考數(shù)據(jù):.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí),記函數(shù)在區(qū)間的最大值為.最小值為,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】共享單車又稱為小黃車,近年來逐漸走進(jìn)了人們的生活,也成為減少空氣污染,緩解城市交通壓力的一種重要手段.為調(diào)查某地區(qū)居民對(duì)共享單車的使用情況,從該地區(qū)居民中按年齡用隨機(jī)抽樣的方式隨機(jī)抽取了人進(jìn)行問卷調(diào)查,得到這人對(duì)共享單車的評(píng)價(jià)得分統(tǒng)計(jì)填入莖葉圖,如下所示(滿分分):

1)找出居民問卷得分的眾數(shù)和中位數(shù);

2)請(qǐng)計(jì)算這位居民問卷的平均得分;

3)若在成績(jī)?yōu)?/span>分的居民中隨機(jī)抽取人,求恰有人成績(jī)超過分的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù), .

(1)求過點(diǎn)的切線方程;

(2)當(dāng)時(shí),求函數(shù)的最大值;

(3)證明:當(dāng)時(shí),不等式對(duì)任意均成立(其中為自然對(duì)數(shù)的底數(shù), ).

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系 xOy 中,已知橢圓 C1(a>b>0)的離心率為,且過點(diǎn),點(diǎn)P在第四象限, A為左頂點(diǎn), B為上頂點(diǎn), PAy軸于點(diǎn)C,PBx軸于點(diǎn)D.

(1) 求橢圓 C 的標(biāo)準(zhǔn)方程;

(2) PCD 面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案