科目: 來源: 題型:
【題目】寫算,是一種格子乘法,也是筆算乘法的一種,用以區(qū)別籌算與珠算,它由明代數學家吳敬在其撰寫的《九章算法比類大全》一書中提出,是從天元式的乘法演變而來.例如計算,將被乘數89計入上行,乘數65計入右行.然后以乘數65的每位數字乘被乘數89的每位數字,將結果計入相應的格子中,最后從右下方開始按斜行加起來,滿十向上斜行進一,如圖,即得5785.類比此法畫出的表格,若從表內(表周邊數據不算在內)任取一數,則恰取到奇數的概率是( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是梯形.BC∥AD,AB=BC=CD=1,AD=2,,
(Ⅰ)證明;AC⊥BP;
(Ⅱ)求直線AD與平面APC所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校為了解高三男生的體能達標情況,抽調了120名男生進行立定跳遠測試,根據統計數據得到如下的頻率分布直方圖.若立定跳遠成績落在區(qū)間的左側,則認為該學生屬“體能不達標的學生,其中分別為樣本平均數和樣本標準差,計算可得(同一組中的數據用該組區(qū)間的中點值作代表).
(1)若該校高三某男生的跳遠距離為,試判斷該男生是否屬于“體能不達標”的學生?
(2)該校利用分層抽樣的方法從樣本區(qū)間中共抽出5人,再從中選出兩人進行某體能訓練,求選出的兩人中恰有一人跳遠距離在的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】《九章算術》中有一分鹿問題:“今有大夫、不更、簪裊、上造、公士,凡五人,共獵得五鹿.欲以爵次分之,問各得幾何.”在這個問題中,大夫、不更、簪裊、上造、公士是古代五個不同爵次的官員,現皇帝將大夫、不更、簪梟、上造、公士這5人分成兩組(一組2人,一組3人),派去兩地執(zhí)行公務,則大夫、不更恰好在同一組的概率為( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】某籃球隊甲、乙兩名運動員練習罰球,每人練習10組,每組罰球40個.命中個數的莖葉圖如圖,則下面結論中錯誤的一個是( )
A. 甲的極差是29 B. 甲的中位數是24
C. 甲罰球命中率比乙高 D. 乙的眾數是21
查看答案和解析>>
科目: 來源: 題型:
【題目】2019新型冠狀病譯(2019-nCoV)于2020年1月12日被世界衛(wèi)生組織命名.冠狀病毒是一個大型病毒家族,可引起感冒以及中東呼吸綜合征(MERS)和嚴重急性呼吸綜合征(SARS)等較嚴重疾病.某醫(yī)院對病患及家屬是否帶口罩進行了調查,統計人數得到如下列聯表:
戴口罩 | 未戴口罩 | 總計 | |
未感染 | 30 | 10 | 40 |
感染 | 4 | 6 | 10 |
總計 | 34 | 16 | 50 |
(1)根據上表,判斷是否有95%的把握認為未感染與戴口罩有關;
(2)在上述感染者中,用分層抽樣的方法抽取5人,再在這5人中隨機抽取2人,求這2人都未戴口罩的概率.
參考公式:,其中.
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】新高考方案規(guī)定,普通高中學業(yè)水平考試分為合格性考試(合格考)和選擇性考試(選擇考).其中“選擇考”成績將計入高考總成績,即“選擇考”成績根據學生考試時的原始卷面分數,由高到低進行排序,評定為A,B,C,D,E五個等級.某試點高中2019年參加“選擇考”總人數是2017年參加“選擇考”總人數的2倍,為了更好地分析該校學生“選擇考”的水平情況,統計了該校2017年和2019年“選擇考”成績等級結果,得到如圖表:
針對該!斑x擇考”情況,2019年與2017年比較,下列說法正確的是( )
A.獲得A等級的人數不變B.獲得B等級的人數增加了1倍
C.獲得C等級的人數減少了D.獲得E等級的人數不變
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com