相關習題
 0  265017  265025  265031  265035  265041  265043  265047  265053  265055  265061  265067  265071  265073  265077  265083  265085  265091  265095  265097  265101  265103  265107  265109  265111  265112  265113  265115  265116  265117  265119  265121  265125  265127  265131  265133  265137  265143  265145  265151  265155  265157  265161  265167  265173  265175  265181  265185  265187  265193  265197  265203  265211  266669 

科目: 來源: 題型:

【題目】已知三棱錐的棱長均為6,其內有個小球,球與三棱錐的四個面都相切,球與三棱錐的三個面和球都相切,如此類推,,球與三棱錐的三個面和球都相切(,且),則球的體積等于__________,球的表面積等于__________.

查看答案和解析>>

科目: 來源: 題型:

【題目】X是有限集,t為正整數(shù),F是包含t個子集的子集族:F=.如果F中的部分子集構成的集族S滿足:對S中任意兩個不相等的集合A、B,均不成立,則稱S為反鏈.S1為包含集合最多的反鏈,S2是任意反鏈.證明:存在S2S1的單射f,滿足成立.

查看答案和解析>>

科目: 來源: 題型:

【題目】甲,乙兩人進行拋硬幣游戲,規(guī)定:每次拋幣后,正面向上甲贏,否則乙贏.此時,兩人正在游戲,且知甲再贏(常數(shù))次就獲勝,而乙要再贏(常數(shù))次才獲勝,其中一人獲勝游戲就結束.設再進行次拋幣,游戲結束.

1)若,,求概率

2)若,求概率的最大值(用表示).

查看答案和解析>>

科目: 來源: 題型:

【題目】[選修4—4:坐標系與參數(shù)方程]

以平面直角坐標系的原點為極點,x軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位.已知直線l的參數(shù)方程是 (t為參數(shù)),圓C的極坐標方程是ρ=4cos θ,求直線l被圓C截得的弦長.

查看答案和解析>>

科目: 來源: 題型:

【題目】若實數(shù)滿足,則稱為函數(shù)的不動點.

(1)求函數(shù)的不動點;

(2)設函數(shù),其中為實數(shù).

① 若時,存在一個實數(shù),使得既是的不動點,又是 的不動點(是函數(shù)的導函數(shù)),求實數(shù)的取值范圍;

② 令,若存在實數(shù),使,, 成各項都為正數(shù)的等比數(shù)列,求證:函數(shù)存在不動點.

查看答案和解析>>

科目: 來源: 題型:

【題目】數(shù)列的前項和,對任意,都有為常數(shù))

(1)當時,求

(2)當時,

(ⅰ)求證:數(shù)列是等差數(shù)列;

(ⅱ)若對任意,必存在使得,已知,且,求數(shù)列的通項公式.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系中,圓,直線.為圓內一點,弦過點,過點的垂線交于點.

1)若,求的面積;

2)判斷直線與圓的位置關系,并證明.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求直線的普通方程和曲線的直角坐標方程;

2)若射線)與直線和曲線分別交于,兩點,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線上一點到其準線的距離為.

1)求拋物線的方程;

2)如圖、、為拋物線上三個點,,若四邊形為菱形,求四邊形的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學”的口號,鼓勵學生線上學習.某校數(shù)學教師為了調查高三學生數(shù)學成績與線上學習時間之間的相關關系,在高三年級中隨機選取名學生進行跟蹤問卷,其中每周線上學習數(shù)學時間不少于小時的有人,在這人中分數(shù)不足分的有人;在每周線上學習數(shù)學時間不足于小時的人中,在檢測考試中數(shù)學平均成績不足分的占.

1)請完成列聯(lián)表;并判斷是否有的把握認為“高三學生的數(shù)學成績與學生線上學習時間有關”;

分數(shù)不少于

分數(shù)不足

合計

線上學習時間不少于小時

線上學習時間不足小時

合計

2)在上述樣本中從分數(shù)不足于分的學生中,按照分層抽樣的方法,抽到線上學習時間不少于小時和線上學習時間不足小時的學生共名,若在這名學生中隨機抽取人,求這人每周線上學習時間都不足小時的概率.(臨界值表僅供參考)

(參考公式,其中

查看答案和解析>>

同步練習冊答案