相關(guān)習題
 0  265459  265467  265473  265477  265483  265485  265489  265495  265497  265503  265509  265513  265515  265519  265525  265527  265533  265537  265539  265543  265545  265549  265551  265553  265554  265555  265557  265558  265559  265561  265563  265567  265569  265573  265575  265579  265585  265587  265593  265597  265599  265603  265609  265615  265617  265623  265627  265629  265635  265639  265645  265653  266669 

科目: 來源: 題型:

【題目】已知函數(shù),

(1)當時,求不等式的解集;

(2)若不等式的解集為空集,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖是函數(shù)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將的圖象上的所有的點(

A.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標不變

B.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>2,縱坐標不變

C.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標不變

D.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>2,縱坐標不變

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)求不等式的解集;

(2)若恒成立,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標系中,以原點為極點,軸的正半軸為極軸,以相同的長度單位建立極坐標系,已知直線的極坐標方程為,曲線的極坐標方程為

(l)設(shè)為參數(shù),若,求直線的參數(shù)方程;

2)已知直線與曲線交于,設(shè),且,求實數(shù)的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若,證明:

查看答案和解析>>

科目: 來源: 題型:

【題目】已知為圓上一點,過點軸的垂線交軸于點,點滿足

(1)求動點的軌跡方程;

(2)設(shè)為直線上一點,為坐標原點,且,求面積的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,四棱錐的底面是正方形,垂直于底面,已知四棱錐的正視圖,如圖2所示.

I)若M的中點,證明:平面;

II)求棱錐的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】唐三彩,中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術(shù)的特點,在中國文化中占有重要的歷史地位,在中國的陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產(chǎn)至今已有多年的歷史,對唐三彩的復制和仿制工藝,至今也有百余年的歷史.某陶瓷廠在生產(chǎn)過程中,對仿制的件工藝品測得重量(單位:)數(shù)據(jù)如下表:

分組

頻數(shù)

頻率

合計

(1)求出頻率分布表中實數(shù)的值;

(2)若從仿制的件工藝品重量范圍在的工藝品中隨機抽選件,求被抽選件工藝品重量均在范圍中的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】“割圓術(shù)”是劉徽最突出的數(shù)學成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計算圓的周長,面積已經(jīng)圓周率的基礎(chǔ),劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數(shù)值,這個結(jié)果是當時世界上圓周率計算的最精確數(shù)據(jù).如圖,當分割到圓內(nèi)接正六邊形時,某同學利用計算機隨機模擬法向圓內(nèi)隨機投擲點,計算得出該點落在正六邊形內(nèi)的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數(shù)據(jù):

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目: 來源: 題型:

【題目】已知二次函數(shù)的定義域恰是不等式的解集,其值域為,函數(shù)的定義域為,值域為.

1)求定義域和值域;

2)試用單調(diào)性的定義法解決問題:若存在實數(shù),使得函數(shù)上單調(diào)遞減,上單調(diào)遞增,求實數(shù)的取值范圍并用表示;

3)是否存在實數(shù),使成立?若存在,求實數(shù)的取值范圍,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案