相關(guān)習(xí)題
 0  265791  265799  265805  265809  265815  265817  265821  265827  265829  265835  265841  265845  265847  265851  265857  265859  265865  265869  265871  265875  265877  265881  265883  265885  265886  265887  265889  265890  265891  265893  265895  265899  265901  265905  265907  265911  265917  265919  265925  265929  265931  265935  265941  265947  265949  265955  265959  265961  265967  265971  265977  265985  266669 

科目: 來(lái)源: 題型:

【題目】已知函數(shù)的圖象過(guò)點(diǎn)和點(diǎn).

1)求函數(shù)的最大值與最小值;

2)將函數(shù)的圖象向左平移個(gè)單位后,得到函數(shù)的圖象;已知點(diǎn),若函數(shù)的圖象上存在點(diǎn),使得,求函數(shù)圖象的對(duì)稱中心.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在極坐標(biāo)系中,O為極點(diǎn),點(diǎn)在曲線上,直線l過(guò)點(diǎn)且與垂直,垂足為P.

1)當(dāng)時(shí),求l的極坐標(biāo)方程;

2)當(dāng)MC上運(yùn)動(dòng)且P在線段OM上時(shí),求P點(diǎn)軌跡的極坐標(biāo)方程.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù),.

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)設(shè)函數(shù),其中是自然對(duì)數(shù)的底數(shù),判斷有無(wú)極值,有極值時(shí)求出極值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求曲線在點(diǎn)處的切線方程;

(2)證明:在區(qū)間上有且僅有個(gè)零點(diǎn).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形.且,點(diǎn)的中點(diǎn).

1)求證:;

2)求平面與平面所成銳二面角的大。

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知曲線C1y=cos x,C2y=sin (2x+),則下面結(jié)論正確的是( )

A. C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線C2

B. C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C2

C. C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線C2

D. C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C2

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】設(shè)函數(shù)的導(dǎo)函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),證明;

(Ⅲ)設(shè)為函數(shù)在區(qū)間內(nèi)的零點(diǎn),其中,證明.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】設(shè)橢圓的左焦點(diǎn)為,上頂點(diǎn)為.已知橢圓的短軸長(zhǎng)為4,離心率為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)點(diǎn)在橢圓上,且異于橢圓的上、下頂點(diǎn),點(diǎn)為直線軸的交點(diǎn),點(diǎn)軸的負(fù)半軸上.若為原點(diǎn)),且,求直線的斜率.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,平面,.

(Ⅰ)求證:平面;

(Ⅱ)求直線與平面所成角的正弦值;

(Ⅲ)若二面角的余弦值為,求線段的長(zhǎng).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】設(shè)甲、乙兩位同學(xué)上學(xué)期間,每天7:30之前到校的概率均為.假定甲、乙兩位同學(xué)到校情況互不影響,且任一同學(xué)每天到校情況相互獨(dú)立.

(Ⅰ)用表示甲同學(xué)上學(xué)期間的三天中7:30之前到校的天數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(Ⅱ)設(shè)為事件“上學(xué)期間的三天中,甲同學(xué)在7:30之前到校的天數(shù)比乙同學(xué)在7:30之前到校的天數(shù)恰好多2”,求事件發(fā)生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案