科目: 來源: 題型:
【題目】一款擊鼓小游戲的規(guī)則如下:每盤游戲都需要擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得分).設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨(dú)立.
(1)設(shè)每盤游戲獲得的分?jǐn)?shù)為,求的分布列;
(2)玩三盤游戲,至少有一盤出現(xiàn)音樂的概率是多少?
(3)玩過這款游戲的許多人都發(fā)現(xiàn),若干盤游戲后,與最初的分?jǐn)?shù)相比,分?jǐn)?shù)沒有增加反而減少了.請運(yùn)用概率統(tǒng)計(jì)的相關(guān)知識分析分?jǐn)?shù)減少的原因.
查看答案和解析>>
科目: 來源: 題型:
【題目】各項(xiàng)均為非負(fù)整數(shù)的數(shù)列同時滿足下列條件:
① ;② ;③是的因數(shù)().
(Ⅰ)當(dāng)時,寫出數(shù)列的前五項(xiàng);
(Ⅱ)若數(shù)列的前三項(xiàng)互不相等,且時, 為常數(shù),求的值;
(Ⅲ)求證:對任意正整數(shù),存在正整數(shù),使得時, 為常數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】九章算術(shù)是我國古代著名數(shù)學(xué)經(jīng)典其中對勾股定理的論述比西方早一千多年,其中有這樣一個問題:“今有圓材埋在壁中,不知大小以鋸鋸之,深一寸,鋸道長一尺問徑幾何?”其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深一寸,鋸道長一尺問這塊圓柱形木料的直徑是多少?長為1丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示陰影部分為鑲嵌在墻體內(nèi)的部分已知弦尺,弓形高寸,估算該木材鑲嵌在墻中的體積約為( )(注:1丈尺寸,,)
A. 600立方寸 B. 610立方寸 C. 620立方寸 D. 633立方寸
查看答案和解析>>
科目: 來源: 題型:
【題目】已知集合,集合,,滿足.
①每個集合都恰有5個元素
②
集合中元素的最大值與最小值之和稱為集合的特征數(shù),記為,則 的值不可能為( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率為,左頂點(diǎn)為A,右焦點(diǎn)為F,且|AF|=3.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)F做互相垂直的兩條直線l1,l2分別交直線l:x=4于M,N兩點(diǎn),直線AM,AN分別交橢圓于P,Q兩點(diǎn),求證:P,F(xiàn),Q三點(diǎn)共線.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓經(jīng)過兩點(diǎn),且圓心在直線上.
(Ⅰ)求圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線經(jīng)過點(diǎn),且與圓相交所得弦長為,求直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】由于受到網(wǎng)絡(luò)電商的沖擊,某品牌的洗衣機(jī)在線下的銷售受到影響,承受了一定的經(jīng)濟(jì)損失,現(xiàn)將地區(qū)200家實(shí)體店該品牌洗衣機(jī)的月經(jīng)濟(jì)損失統(tǒng)計(jì)如圖所示.
(1)求的值;
(2)求地區(qū)200家實(shí)體店該品牌洗衣機(jī)的月經(jīng)濟(jì)損失的眾數(shù)以及中位數(shù);
(3)不經(jīng)過計(jì)算,直接給出地區(qū)200家實(shí)體店經(jīng)濟(jì)損失的平均數(shù)與6000的大小關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com