科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,為拋物線上不同的兩點,且,點且于點.
(1)求的值;
(2)過軸上一點 的直線交于,兩點,在的準(zhǔn)線上的射影分別為,為的焦點,若,求中點的軌跡方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,一個倉庫設(shè)計由上部屋頂和下部主體兩部分組成,屋頂?shù)男螤钍撬睦忮F,四邊形是正方形,點為正方形的中心,平面;下部的形狀是長方體.已知上部屋頂造價與屋頂面積成正比,比例系數(shù)為,下部主體造價與高度成正比,比例系數(shù)為.若欲造一個上、下總高度為10,的倉庫,則當(dāng)總造價最低時,( )
A.B.C.4D.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出的普通方程及的直角坐標(biāo)方程;
(2)設(shè)點在上,點在上,求的最小值及此時點的直角坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】某果園種植“糖心蘋果”已有十余年,為了提高利潤,該果園每年投入一定的資金,對種植采摘包裝宣傳等環(huán)節(jié)進行改進.如圖是2009年至2018年,該果園每年的投資金額(單位:萬元)與年利潤增量(單位:萬元)的散點圖:
該果園為了預(yù)測2019年投資金額為20萬元時的年利潤增量,建立了關(guān)于的兩個回歸模型;
模型①:由最小二乘公式可求得與的線性回歸方程:;
模型②:由圖中樣本點的分布,可以認(rèn)為樣本點集中在曲線:的附近,對投資金額做交換,令,則,且有,,,.
(1)根據(jù)所給的統(tǒng)計量,求模型②中關(guān)于的回歸方程;
(2)分別利用這兩個回歸模型,預(yù)測投資金額為20萬元時的年利潤增量(結(jié)果保留兩位小數(shù));
(3)根據(jù)下列表格中的數(shù)據(jù),比較兩種模型的相關(guān)指數(shù),并說明誰的預(yù)測值精度更高更可靠.
回歸模型 | 模型① | 模型② |
回歸方程 | ||
102.28 | 36.19 |
附:樣本的最小乘估計公式為,;
相關(guān)指數(shù).
參考數(shù)據(jù):,.
查看答案和解析>>
科目: 來源: 題型:
【題目】函數(shù)的定義域為,若存在一次函數(shù),使得對于任意的,都有恒成立,則稱函數(shù)在上的弱漸進函數(shù).下列結(jié)論正確的是__________.(寫出所有正確命題的序號)
①是在上的弱漸進函數(shù);
②是在上的弱漸進函數(shù);
③是在上的弱漸進函數(shù);
④是在上的弱漸進函數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線過點且傾斜角為,以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,若曲線的極坐標(biāo)方程為,且直線與曲線相交于,兩點.
(1)寫出曲線的直角坐標(biāo)方程和直線的參數(shù)方程;
(2)若,求直線的直角坐標(biāo)方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示, 是邊長為3的正方形, 平面與平面所成角為.
(Ⅰ)求證: 平面;
(Ⅱ)設(shè)點是線段上一個動點,試確定點的位置,使得平面,并證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過點的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點。
(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:
(2)若成等比數(shù)列,求a的值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com