科目: 來源: 題型:
【題目】已知函數(shù)(x>0).
(1)若a=1,f(x)在(0,+∞)上是單調(diào)增函數(shù),求b的取值范圍;
(2)若a≥2,b=1,求方程在(0,1]上解的個(gè)數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,長(zhǎng)途車站P與地鐵站O的距離為千米,從地鐵站O出發(fā)有兩條道路l1,l2,經(jīng)測(cè)量,l1,l2的夾角為45°,OP與l1的夾角滿足tan=(其中0<θ<),現(xiàn)要經(jīng)過P修條直路分別與道路l1,l2交匯于A,B兩點(diǎn),并在A,B處設(shè)立公共自行車停放點(diǎn).
(1)已知修建道路PA,PB的單位造價(jià)分別為2m元/千米和m元/千米,若兩段道路的總造價(jià)相等,求此時(shí)點(diǎn)A,B之間的距離;
(2)考慮環(huán)境因素,需要對(duì)OA,OB段道路進(jìn)行翻修,OA,OB段的翻修單價(jià)分別為n元/千米和n元/千米,要使兩段道路的翻修總價(jià)最少,試確定A,B點(diǎn)的位置.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè):實(shí)數(shù)滿足,其中;
:實(shí)數(shù)滿足.
(Ⅰ)若,且為真,求實(shí)數(shù)的取值范圍;
(Ⅱ)若是的必要不充分條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】(本小題滿分14分)已知函數(shù)f(x)=-2lnx+x2-2ax+a2,其中a>0.
(Ⅰ)設(shè)g(x)為f(x)的導(dǎo)函數(shù),討論g(x)的單調(diào)性;
(Ⅱ)證明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在區(qū)間(1,+∞)內(nèi)有唯一解.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為和,由4個(gè)點(diǎn)、、和組成了一個(gè)高為,面積為的等腰梯形.
(1)求橢圓的方程;
(2)過點(diǎn)的直線和橢圓交于兩點(diǎn)、,求面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了推行“智慧課堂”教學(xué),某老師分別用傳統(tǒng)教學(xué)和“智慧課堂”兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班級(jí)進(jìn)行教學(xué)實(shí)驗(yàn),為了比較教學(xué)效果,期屮考試后,分別從兩個(gè)班級(jí)屮各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),結(jié)果如下表:記成績(jī)不低于70分者為“成績(jī)優(yōu)良”.
分?jǐn)?shù) | |||||
甲班頻數(shù) | 5 | 6 | 4 | 4 | 1 |
乙班頻數(shù) | 1 | 3 | 6 | 5 | 5 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷“成績(jī)優(yōu)良與教學(xué)方式是否有關(guān)”?
甲班 | 乙班 | 總計(jì) | |
成績(jī)優(yōu)良 | |||
p>成績(jī)不優(yōu)良 | |||
總計(jì) |
附: .
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
(2)現(xiàn)從上述40人中,學(xué)校按成績(jī)是否優(yōu)良采川分層扣樣的方法扣取8人進(jìn)行考核.在這8人中,記成績(jī)不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)f(x)=(x2-1)lnx-x2+2x.
(1)求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)證明:f(x)≥1.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com