相關(guān)習題
 0  266383  266391  266397  266401  266407  266409  266413  266419  266421  266427  266433  266437  266439  266443  266449  266451  266457  266461  266463  266467  266469  266473  266475  266477  266478  266479  266481  266482  266483  266485  266487  266491  266493  266497  266499  266503  266509  266511  266517  266521  266523  266527  266533  266539  266541  266547  266551  266553  266559  266563  266569  266577  266669 

科目: 來源: 題型:

【題目】波羅尼斯(古希臘數(shù)學家,約公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)k)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現(xiàn)有,,則當的面積最大時,AC邊上的高為_______________.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知曲線的極坐標方程是,以極點為原點,極軸為軸的正半軸,建立平面直角坐標系,直線過點,傾斜角為

1)求曲線的直角坐標方程與直線l的參數(shù)方程;

2)設直線與曲線交于兩點,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的極值點個數(shù);

2)若有兩個極值點,試判斷的大小關(guān)系并證明.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱柱中,底面ABCD是等腰梯形,,,頂點在底面ABCD內(nèi)的射影恰為點C.

1)求證:BC⊥平面ACD1;

2)若直線DD1與底面ABCD所成的角為,求平面與平面ABCD所成銳二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】關(guān)于函數(shù)有下述四個結(jié)論:

①函數(shù)的圖象把圓的面積兩等分

是周期為的函數(shù)

③函數(shù)在區(qū)間上有3個零點

④函數(shù)在區(qū)間上單調(diào)遞減

其中所有正確結(jié)論的編號是(

A.①③④B.②④C.①④D.①③

查看答案和解析>>

科目: 來源: 題型:

【題目】趙爽弦圖(圖1)是取材于我國古代數(shù)學家趙爽的《勾股圓方圖》,它是由四個全等的直角三角形與中間的小正方形拼成的一個大正方形.2是由弦圖變化得到,它是由八個全等的直角三角形和中間的一個小正方形拼接而成.現(xiàn)隨機向圖2中大正方形的內(nèi)部投擲一枚飛鏢,若直角三角形的直角邊長分別為23,則飛鏢投中小正方形(陰影)區(qū)域的概率為(

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知等差數(shù)列滿足.

(1)求的通項公式;

(2)設等比數(shù)列滿足,問: 與數(shù)列的第幾項相等?

查看答案和解析>>

科目: 來源: 題型:

【題目】在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對某種產(chǎn)品的研發(fā)投入.為了對新研發(fā)的產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格試銷,得到一組檢測數(shù)據(jù)如表所示:

試銷價格(元)

產(chǎn)品銷量 (件)

已知變量且有線性負相關(guān)關(guān)系,現(xiàn)有甲、乙、丙三位同學通過計算求得回歸直線方程分別為:甲; 乙;丙,其中有且僅有一位同學的計算結(jié)果是正確的.

1)試判斷誰的計算結(jié)果正確?

2)若由線性回歸方程得到的估計數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過,則稱該檢測數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測數(shù)據(jù)中隨機抽取個,求“理想數(shù)據(jù)”的個數(shù)為的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系中,直線的傾斜角為,且經(jīng)過點.以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足,記點N的軌跡為曲線C.

(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標方程;

(Ⅱ)設直線與曲線C交于P,Q兩點,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】設三棱錐的每個頂點都在球的球面上,是面積為的等邊三角形,,,且平面平面.

1)確定的位置(需要說明理由),并證明:平面平面.

2)與側(cè)面平行的平面與棱,分別交于,,求四面體的體積的最大值.

查看答案和解析>>

同步練習冊答案