相關習題
 0  266485  266493  266499  266503  266509  266511  266515  266521  266523  266529  266535  266539  266541  266545  266551  266553  266559  266563  266565  266569  266571  266575  266577  266579  266580  266581  266583  266584  266585  266587  266589  266593  266595  266599  266601  266605  266611  266613  266619  266623  266625  266629  266635  266641  266643  266649  266653  266655  266661  266665  266669 

科目: 來源: 題型:

【題目】如圖,四邊形為矩形,且平面, ,的中點.

(1)求證:;

(2)求三棱錐的體積;

(3)探究在上是否存在點,使得平面,并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓,點是圓上任意一點,線段的垂直平分線交于點,當點在圓上運動時,點的軌跡為曲線

(1)求曲線的方程;

(2)若直線與曲線相交于兩點,為坐標原點,求面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】設等差數列{an}的前n項和為Sn,已知(a4-1)3+2 016(a4-1)=1,(a2 013-1)3+2 016·(a2 013-1)=-1,則下列結論正確的是(  )

A. S2 016=-2 016,a2 013>a4

B. S2 016=2 016,a2 013>a4

C. S2 016=-2 016,a2 013<a4

D. S2 016=2 016,a2 013<a4

查看答案和解析>>

科目: 來源: 題型:

【題目】三國時代吳國數學家趙爽所注《周髀算經》中給出了勾股定理的絕妙證明,下面是趙爽的弦圖及注文,弦圖是一個以勾股之弦為邊的正方形,其面積稱為弦實,圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用×+(股-勾)2=4×朱實+黃實=弦實,化簡得勾2+2=2,設勾股形中勾股比為,若向弦圖內隨機拋擲1000顆圖釘(大小忽略不計),則落在黃色圖形內的圖釘數大約為(

A.134B.866C.300D.188

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐中,AB,,,,,E的中點.

1)求證:

2)求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓C)經過點,離心率為,,分別為橢圓的左、右焦點.

1)求橢圓C的標準方程;

2)若點)在橢圓C上,求證;直線與直線關于直線l對稱.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了解高中學生對數學課是否喜愛是否和性別有關,隨機調查220名高中學生,將他們的意見進行了統(tǒng)計,得到如下的列聯表.

喜愛數學課

不喜愛數學課

合計

男生

90

20

110

女生

70

40

110

合計

160

60

220

1)根據上面的列聯表判斷,能否有的把握認為喜愛數學課與性別有關;

2)為培養(yǎng)學習興趣,從不喜愛數學課的學生中進行進一步了解,從上述調查的不喜愛數學課的人員中按分層抽樣抽取6人,再從這6人中隨機抽出2名進行電話回訪,求抽到的2人中至少有1男生的概率.

參考公式:.

P

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓C)經過點,離心率為,分別為橢圓的左、右焦點.

1)求橢圓C的標準方程;

2)若點)在橢圓C上,求證;直線與直線關于直線l對稱.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐中,CDAB,,,,E的中點.

1)求證:;

2)求P到平面的距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了解高中學生對數學課是否喜愛是否和性別有關,隨機調查220名高中學生,將他們的意見進行了統(tǒng)計,得到如下的列聯表.

喜愛數學課

不喜愛數學課

合計

男生

90

20

110

女生

70

40

110

合計

160

60

220

1)根據上面的列聯表判斷,能否有的把握認為喜愛數學課與性別有關;

2)為培養(yǎng)學習興趣,從不喜愛數學課的學生中進行進一步了解,從上述調查的不喜愛數學課的人員中按分層抽樣抽取6人,再從這6人中隨機抽出2名進行電話回訪,求抽到的2人中至少有1男生的概率.

參考公式:.

P

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案