(14分)

 

(1)開普勒行星運動第三定律指出:行星繞太陽運動的橢圓軌道的半長軸a的三次方與它的公轉(zhuǎn)周期T的二次方成正比,即,k是一個對所有行星都相同的常量。將行星繞太陽的運動按圓周運動處理,請你推導(dǎo)出太陽系中該常量k的表達式。已知引力常量為G,太陽的質(zhì)量為M。

(2)開普勒定律不僅適用于太陽系,它對一切具有中心天體的引力系統(tǒng)(如地月系統(tǒng))都成立。經(jīng)測定月地距離為3.84×108m,月球繞地球運動的周期為2.36×106S,試計算地球的質(zhì)M。(G=6.67×10-11Nm2/kg2,結(jié)果保留一位有效數(shù)字)

【解析】:(1)因行星繞太陽作勻速圓周運動,于是軌道的半長軸a即為軌道半徑r。根據(jù)萬有引力定律和牛頓第二定律有

                            ①

    于是有                           ②

即                                ③

(2)在月地系統(tǒng)中,設(shè)月球繞地球運動的軌道半徑為R,周期為T,由②式可得

                                ④

解得     M=6×1024kg                         ⑤

M=5×1024kg也算對)

23.【題文】(16分)

     如圖所示,在以坐標(biāo)原點O為圓心、半徑為R的半圓形區(qū)域內(nèi),有相互垂直的勻強電場和勻強磁場,磁感應(yīng)強度為B,磁場方向垂直于xOy平面向里。一帶正電的粒子(不計重力)從O點沿y軸正方向以某一速度射入,帶電粒子恰好做勻速直線運動,經(jīng)t0時間從P點射出。

(1)求電場強度的大小和方向。

(2)若僅撤去磁場,帶電粒子仍從O點以相同的速度射入,經(jīng)時間恰從半圓形區(qū)域的邊界射出。求粒子運動加速度的大小。

(3)若僅撤去電場,帶電粒子仍從O點射入,且速度為原來的4倍,求粒子在磁場中運動的時間。

 

(1)    (2)   (3) 

解析::(1)設(shè)帶電粒子的質(zhì)量為m,電荷量為q,初速度為v,電場強度為E?膳袛喑隽W邮艿降穆鍌惔帕ρx軸負(fù)方向,于是可知電場強度沿x軸正方向

且有    qE=qvB                      ①

又     R=vt0                        ②

則                           ③

(2)僅有電場時,帶電粒子在勻強電場中作類平拋運動

在y方向位移                  ④

由②④式得                          ⑤

設(shè)在水平方向位移為x,因射出位置在半圓形區(qū)域邊界上,于是

                  

又有                          ⑥

得                             ⑦

(3)僅有磁場時,入射速度,帶電粒子在勻強磁場中作勻速圓周運動,設(shè)軌道半徑為r,由牛頓第二定律有

                               ⑧

又                qE=ma                  ⑨

由⑦⑧⑨式得                      ⑩

由幾何關(guān)系                      11

即                       12

帶電粒子在磁場中運動周期

           

則帶電粒子在磁場中運動時間

           

所以                             13

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:

(2011?安徽)(1)開普勒行星運動第三定律指出:行星繞太陽運動的橢圓軌道的半長軸a的三次方與它的公轉(zhuǎn)周期T的二次方成正比,即
a3T2
=k,k是一個對所有行星都相同的常量.將行星繞太陽的運動按圓周運動處理,請你推導(dǎo)出太陽系中該常量k的表達式.已知引力常量為G,太陽的質(zhì)量為M
(2)開普勒定律不僅適用于太陽系,它對一切具有中心天體的引力系統(tǒng)(如地月系統(tǒng))都成立.經(jīng)測定月地距離為3.84×108m,月球繞地球運動的周期為2.36×106S,試計算地球的質(zhì)量M.(G=6.67×10-11Nm2/kg2,結(jié)果保留一位有效數(shù)字)

查看答案和解析>>

科目:高中物理 來源: 題型:

(1)開普勒行星運動第三定律指出:行星繞太陽運動的橢圓軌道的半長軸a的三次方與它的公轉(zhuǎn)周期T的二次方成正比,即
a3T2
=k,k是一個對所有行星都相同的常量.將行星繞太陽的運動按圓周運動處理,請你推導(dǎo)出太陽系中該常量k的表達式.已知引力常量為G,太陽的質(zhì)量為M
(2)一均勻球體以角速度ω繞自己的對稱軸自轉(zhuǎn),若維持球體不被瓦解的唯一作用力是萬有引力,則此球的最小密度是多少?

查看答案和解析>>

科目:高中物理 來源: 題型:

(1)開普勒行星運動第三定律指出:行星繞太陽運動的橢圓軌道的半長軸a的三次方與它的公轉(zhuǎn)周期T的二次方成正比,即k是一個對所有行星都相同的常量。將行星繞太陽的運動按圓周運動處理,請你推導(dǎo)出太陽系中該常量k的表達式。已知引力常量為G,太陽的質(zhì)量為M

(2)開普勒定律不僅適用于太陽系,它對一切具有中心天體的引力系統(tǒng)(如地月系統(tǒng))都成立。經(jīng)測定月地距離為3.84×108m,月球繞地球運動的周期為2.36×106S,試計算地球的質(zhì)M。(G=6.67×10-11Nm2/kg2,結(jié)果保留一位有效數(shù)字)

查看答案和解析>>

科目:高中物理 來源: 題型:

(1)開普勒行星運動第三定律指出:行星繞太陽運動的橢圓軌道的半長軸a的三次方與它的公轉(zhuǎn)周期T的二次方成正比,即,k是一個對所有行星都相同的常量。將行星繞太陽的運動按圓周運動處理,請你推導(dǎo)出太陽系中該常量k的表達式。已知引力常量為G,太陽的質(zhì)量為M。

(2)開普勒定律不僅適用于太陽系,它對一切具有中心天體的引力系統(tǒng)(如地月系統(tǒng))都成立。經(jīng)測定月地距離為3.84×108m,月球繞地球運動的周期為2.36×106S,試計算地球的質(zhì)M。(G=6.67×10-11Nm2/kg2,結(jié)果保留一位有效數(shù)字)

 

查看答案和解析>>

科目:高中物理 來源:2011-2012學(xué)年江西省贛州市十一縣(市)高一下學(xué)期期中聯(lián)考物理試題(解析版) 題型:計算題

(1)開普勒行星運動第三定律指出:行星繞太陽運動的橢圓軌道的半長軸a的三次方與它的公轉(zhuǎn)周期T的二次方成正比,即,k是一個對所有行星都相同的常量。將行星繞太陽的運動按圓周運動處理,請你推導(dǎo)出太陽系中該常量k的表達式。已知引力常量為G,太陽的質(zhì)量為M

(2)開普勒定律不僅適用于太陽系,它對一切具有中心天體的引力系統(tǒng)(如地月系統(tǒng))都成立。經(jīng)測定月地距離為3.84×108m,月球繞地球運動的周期為2.36×106S,試計算地球的質(zhì)量M。(G=6.67×10-11Nm2/kg2,結(jié)果保留一位有效數(shù)字)

 

查看答案和解析>>

同步練習(xí)冊答案